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0 Motivation
@ Why is quantum metrology interesting?
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Why is quantum metrology interesting?

@ Recent technological development has made it possible to realize
large coherent quantum systems, i.e., in cold gases, trapped cold
ions or photons.

@ Can such quantum systems outperform classical systems in
something useful, i.e., metrology?



e Simple examples of quantum metrology
@ Classical case: Clock arm
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Classical case: Estimating the angle of a clock arm

@ Arbitrary precision ("in principle").



e Simple examples of quantum metrology

@ Quantum case: Single spin-1/2 particle
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Quantum case: A single spin-1/2 particle

@ Spin-1/2 particle polarized in the z direction.
V4

@ We measure the spin components.
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Quantum case: A single spin-1/2 particle I

@ We cannot measure the three spin coordinates exactly jx, ji, J--

@ In quantum physics, we can get only discrete outcomes in
measurement. In this case, +1/2 and —1/2.

@ A single spin-1/2 particle is not a good clock arm.
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e Simple examples of quantum metrology

@ Magnetometry with the fully polarized state

10/67



Magnetometry with the fully polarized state

@ N spin-1/2 particles, all fully polarized in the z direction.

@ Magtetic field B points to the y direction.

@ Note the uncertainty ellipses. Afy, is the minimal angle difference
we can measure.



Magnetometry with the fully polarized state Il

@ Collective angular momentum components

N
n=1

()

for I = x,y, z, where j;'” are single particle operators.

@ Dynamics _
V) = UglWo),  Up=e ™,

where h = 1.

@ Rotation around the y-axis.



Magnetometry with the fully polarized state Il

@ Let us assume, that we have an M(©) function.
@ We know that there is an AM error in M.
@ How much is the error Af in 6?

@ ltis given by the classical error propagation formula:

AM

Al ~ 7dM/d9'

@ |t tells us how the error in M "propagates" to 6.



Magnetometry with the fully polarized state IV

@ Measure an operator M to get the estimate 6.

@ To obtain the precision of estimation, we can use
the error propagation formula
(AM)? (AM)?

2 _ _
(B0 = [, (e = (M, HI)

S e

» 0

y
A 4



Magnetometry with the fully polarized state V

@ In order to see the full picture, we need to consider v
measurements of M.

@ We have to look for the average of the measured values
v
m= Z my.
n=1

@ Then, if the measured probability distributions fulfill certain
conditions, we can estimate the parameter with a precision

2 _ 1 02 1 (AM)

[ L. Pezze, A. Smerzi, M. K. Oberthaler, R. Schmied, and P. Treutlein,
"Quantum metrology with nonclassical states of atomic ensembles,”

Rev. Mod. Phys. 90, 035005 (2018). |



Magnetometry with the fully polarized state VI

@ We consider the fully polarized states of N spin-1/2 particles

[+ 2",
@ For this state,
N N N N
(Jz) = 5 () =0, (Ady)? = 7 (o) =5 cost, (Jx) = 5 sind.

@ We measure the operator

@ lItis not like a classical clock arm, we have a nonzero uncertainty

o 1 (AMPZ _1(A)? 11

B = oM = N




Magnetometry with the fully polarized state VII

@ Main result:

1
2—7
(B0 = —.

@ In some cold gas experiment, we can have 10° — 10'2 particles.

@ Later we will see that with a separable quantum state we cannot
have a better precision.



e Simple examples of quantum metrology

@ Magnetometry with the spin-squeezed state
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Magnetometry with the spin-squeezed state

@ We can increase the precision by spin squeezing

fully polarized state (fp) spin-squeezed state (sq)
Adg, and Absq are the minimal angle difference we can measure.

We can reach

1
2
(Af)” < N



Spin squeezing in an ensemble of atoms via

interaction with light
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Julsgaard, Kozhekin, Polzik, Nature 2001.



Spin squeezing in a Bose-Einstein Condensate via

interaction between the particles

Figure 1: Spin and

through controlled
interactions onan atom chip.
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M. F. Riedel, P. Bohi, Y. Li, T. W. Hansch, A. Sinatra, and P. Treutlein,
Nature 464, 1170-1173 (2010).



e Simple examples of quantum metrology

@ Metrology with the GHZ state
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GHZ state=Schrodinger cat state

@ A superposition of two macroscopically distinct states




Greenberger-Horne-Zeilinger (GHZ) state

(|OOO 00) + [111...11)).

@ Superposition of all atoms in state "0" and all atoms in state "1".



Metrology with the GHZ state

@ Greenberger-Horne-Zeilinger (GHZ) state

IGHZy) = (|ooo .00) + [111...11)),

%\

@ Unitary |
W) (0) = Up|GHZy), Uy = e 0.
@ Dynamics

[W)(6) = (|ooo .00) + e N0111..11)),

S\



Metrology with the GHZ state I

@ We measure
M = oZN,

which is the parity in the x-basis.
@ Expectation value and variance

(M) = cos(NO), (AM)? = sin?(NO).

@ For 0 = 0, the precision is

1 (amP A
(A= TontP ~ e

[ e.g., photons: D. Bouwmeester, J. W. Pan, M. Daniell, H. Weinfurter and A. Zeilinger,
Phys. Rev. Lett. 82, 1345 (1999);

ions: C. Sackett et al., Nature 404, 256 (2000). ]



Metrology with the GHZ state lll

Quantum Computation with Trapped lons, Innsbruck



Metrology with the GHZ state IV

Figure 2: Determination of p(s.).
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Metrology with the GHZ state IV

@ We reached the Heisenberg-limit

2—7
(D6 = —.

@ The fully polarized state reached only the shot-noise limit

1
2—7
(B0 = .



e Simple examples of quantum metrology

@ Dicke states

30/67



Dicke states

@ Symmetric Dicke states with (J,) = 0 (simply “Dicke states” in the
following) are defined as

|Dn) = (’,\\Il)z > P <\0)®% ® |1>®%) .

k

@ E.g., for four qubits they look like
1

|Dyg) = NG

(/0011) +10101) +|1001) + [0110) + [1010) 4 [1100)) .

[photons: Kiesel, Schmid, GT, Solano, Weinfurter, PRL 2007;
Prevedel, Cronenberg, Tame, Paternostro, Walther, Kim, Zeilinger, PRL 2007;
Wieczorek, Krischek, Kiesel, Michelberger, GT, and Weinfurter, PRL 2009]

cold atoms: Liicke et al., Science 2011; Hamley et al., Science 2011; C. Gross et al.,
Nature 2011



Metrology with Dicke states. Clock arm = noise

@ For our symmetric Dicke state

(J)y=0,I=x,y.z, (J2)=0, (J2)= (J§> = large.

@ Linear metrology
U = exp(—iJy0).

@ Measure (J?) to estimate 6.
(We cannot measure first moments, since they are zero.)

Uncertainty
ellipse



Metrology with Dicke states

@ Dicke states are more robust to noise than GHZ states. (Even if
they loose a particle, they remain entangled).

@ Dicke states can also reach the Heisenberg-scaling like GHZ
states.

Metrology with cold gases: B. Liicke, M Scherer, J. Kruse, L. Pezze, F. Deuretzbacher,
P. Hyllus, O. Topic, J. Peise, W. Ertmer, J. Arlt, L. Santos, A. Smerzi, C. Klempt,
Science 2011.

Metrology with photons: R. Krischek, C. Schwemmer, W. Wieczorek, H. Weinfurter, P.
Hyllus, L. Pezze, A. Smerzi, PRL 2011.



Metrology with Dicke states Il

Experiment with cold gas of 8000 atoms.
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Lucke M. Scherer, Kruse, Pezzé, Deuretzbacher, Hyllus, Topic, Peise, Ertmer, Arlt,

Santos, Smerzi, Klempt, Science 2011.



e Simple examples of quantum metrology

@ Interferometry with squeezed photonic states
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LIGO gravitational wave detector

The performance was enhanced with squeezed light.

LIGO H1

Interferometer

Strain Sensitivity h [1/ Hz]

The role of clock arm is played by the squeezed coherent state.

J. Aasi et al., Nature Photonics 2013.



e Entanglement theory
@ Multipartite entanglement
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k-producibility/k-entanglement

2-entangled

Separable

(N-1)-entangled
N-entangled
(]00) + |11)) ® (]00) + |11)) ® (]00) + |11)) 2-entangled
(]000) +|111)) ® (|000) + [111)) 3-entangled
(]0000) + [1111)) ® (|0) + |1)) 4-entangled



e Entanglement theory

@ The spin-squeezing criterion
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Multipartite entanglement in spin squeezing
@ We consider pure k-producible states of the form

W) = &l ly),
where [1))) is the state of at most k qubits.

Extreme spin squeezing

The spin-squeezing criterion for k-producible states is

(Jy)2 + <Jz>2)

(A'JX)2 Z Jmang ( Jmax

where Jmax = %’ and we use the definition

Serensen and Mglmer, Phys. Rev. Lett. 86, 4431 (2001); experimental test:
Gross, Zibold, Nicklas, Esteve, Oberthaler, Nature 464, 1165 (2010).




Multipartite entanglement in spin squeezing

@ Larger and larger multipartite entanglement is needed to larger
and larger squeezing ("extreme spin squeezing").

0.5

04r1 separable

0 0.2 0.4 0.6 0.8 1
<Jz> /Jmax

@ N =100 spin-1/2 particles, Jnax = N/2.

Serensen and Mglmer, Phys. Rev. Lett. 86, 4431 (2001); experimental test:
Gross, Zibold, Nicklas, Esteve, Oberthaler, Nature 464, 1165 (2010).



Our experience so far

@ We find that more spin squeezing/better precision needs more
entanglement.

@ Question: Is this general?

@ Answer: Yes.



0 Quantum metrology using the quantum Fisher information
@ Quantum Fisher information

43/67



Quantum metrology

@ Fundamental task in metrology

0 U (6)=exp(—id0) op

@ We have to estimate 6 in the dynamics

U = exp(—IiA¥b).



The quantum Fisher information

Cramér-Rao bound on the precision of parameter estimation

For the variance of the parameter estimation

ey 1
(AH) = VFQ[QvA]

holds, where v is the number of repetitions and Fg[p, A] is the quantum
Fisher information.

@ The bound includes any estimation strategy, even POVM’s.
@ The quantum Fisher information is
(Ak = A)? 2
Folo,A]=2) ~——|(k|A|)|*,
ol A =23 S5 IkIAlD

where o = >, A\¢|k) (k|



Convexity of the quantum Fisher information

@ For pure states, it equals four times the variance,

FollV), Al = 4(AA),,.

@ For mixed states, it is convex

FQ[QaA] < ZkaQ”wk)vA]?
k

where
0="Y  PxlVi)(Wl.
K



Quantum Fisher information - Some basic facts

@ The larger the quantum Fisher information, the larger the
achievable precision.

@ For the totally mixed state it is zero for any A
FQ[QCIIUA] = 07

where o, = 1/d is the completely mixed state and d is the
dimension.

@ This is logical: the completely mixed states does not change
under any Hamiltonian.

@ For any state p that commutes with A, i.e., pA — Ap = 0 we have

Falo, A] = 0.



Best operator to measure

@ The error propagation formula is bounded from above as

(AM)? 1

(80 = 5, )P = Falo FT

@ The inequality is saturated for the following operator, i.e.,
the symmetric logarithmic derivative

MZZ

where o = 3", Axlk)(K].

Ik (I CkIA[T),



QFI as a convex roof

The quantum Fisher information is the convex roof of the variance
times four

Folo,Al=4 min > p(AA)?,,
PV &

Pr,Vk

where
0= E Pr| Vi) (W]
K

GT, D. Petz, Phys. Rev. A 87, 032324 (2013); S. Yu, arXiv1302.5311 (2013);
GT, I. Apellaniz, J. Phys. A: Math. Theor. 47, 424006 (2014)

@ ltis like entanglement measures, e. g., Entanglement of
Formation.

@ Convex roof over purifications.
R. Demkowicz-Dobrzanski, J. Kotodynski, M. Guta, Nature Comm. 2012.



The variance as a concave roof

@ We have a family of generealized variances, which are concave in
the state and all equal to the variance for pure states.

@ There is a largest of such functions defined by the concave roof.

The usual variance is

(AAP, = sup D pr(AAY,,
{plﬁwk} k

where
0= PklVk) (Wil
k

GT, D. Petz, Phys. Rev. A 87, 032324 (2013).




Summary of statements

@ Decompose p as
0= PrlVi)(Wkl.
k

@ Then, ;
2Fale Al < > p(AA), < (AAY
k
holds.

@ Both inequalities can be saturated by some decompostion.



Quantum Fisher information and the fidelity

The quantum Fisher information appears in the Taylor expansion of Fg
Fa(o. 09) = 1 - 027224 + O(6%),

where

09 = exp(—iAf) o exp(+iA0).

@ Bures fidelity

2
Fe(o1,00) =Tr < \/agzx/a> :

@ Clearly,
0 < Fg(o1,02) < 1.

The fidelity is 1 only if o1 = 0o.



0 Quantum metrology using the quantum Fisher information

@ Quantum Fisher information in linear interferometers
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Magnetometry with a

@ The Hamiltonian A is defined as
N
A=J = Zjl”), le{x,y,z}.
n=1

There are no interaction terms.

@ The dynamics rotates all spins in the same way.



Quantum Fisher information for separable states

@ Let us consider a pure product state of N qubits

|w>prod = |\U(1)> & |\U(2)> ®..® |\U(N)>.

@ Since this is a pure state, we have Fg|o, J|] = 4(AJ/)2|\U>pmd‘

@ Then, for the product state we have

N
, 1
(DI ) = 22 (BT P gy < N x R

prod -
n=1

where we used that for qubits (Aj,(”))2 <1/4.

@ Since the quantum Fisher information is convex in the state, the
bound is also valid for a mixture of product states, i.e., separable
states

Folo,J] < N.



The quantum Fisher information vs. entanglement

@ For separable states of N spin-1/2 particles (qubits)

FQ[Q7J/]§N7 I:X7y72-

Pezze, Smerzi, Phys. Rev. Lett. 102, 100401 (2009);
Hyllus, GUhne, Smerzi, Phys. Rev. A 82, 012337 (2010)

@ For states with at most k-qubit entanglement (k is divisor of N)
FQ[Qa J/] < KN.

P. Hyllus et al., Phys. Rev. A 85, 022321 (2012);
GT, Phys. Rev. A 85, 022322 (2012).

@ Bound for all quantum states of N qubits

FQ[Qa J/] < N2-



The quantum Fisher information vs. entanglement

5 spin-1/2 particles

AFQ At least

—+25

5-entanglement
T 20

4-entanglement
15

3-entanglement
-+10

2-entanglement
-5

(Using the Fqglo, Ji] < kN. Note that there is a slightly better bound.)



Let us use the Cramér-Rao bound

@ For separable states

(Ae)zz /:X7y7z'

1
vN’
Pezze, Smerzi, Phys. Rev. Lett. 102, 100401 (2009);
Hyllus, GUhne, Smerzi, Phys. Rev. A 82, 012337 (2010)

@ For states with at most k-particle entanglement (k is divisor of N)

1
vkN’

P. Hyllus et al., Phys. Rev. A 85, 022321 (2012);
GT, Phys. Rev. A 85, 022322 (2012).

(26)% >

@ Bound for all quantum states

(AF)? > 1

v N2



Spin squeezing and QFI

Spin squeezing parameter

If ¢€2 < 1 then the state is entangled.
Serensen, Duan, Cirac, Zoller, Nature (2001).

Based on QFI
> N

X = FloJ

If x° < 1 then the state is entangled.
It can be proven that

Thus, x? detects more states than &.
Pezze, Smerzi, PRL 2009.




Non-Gaussian entangled states

H. Strobel, W. Muessel, D. Linnemann, T. Zibold, D. B. Hume, L. Pezze, A. Smerzi,
M. K. Oberthaler, Fisher information and entanglement of non-Gaussian spin states,
Science 2014.



0 Quantum metrology using the quantum Fisher information

@ Noise and imperfections
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Noisy metrology: Simple example

@ A particle with a state ¢4 passes trough a map that turns its
internal state to the fully mixed state with some probability p as

ep(01) = (1 = p)o1 + p3.

@ This map acts in parallel on all the N particles

N
ng(Q) = Z Pnon,
n=0

where the state obtained after n particles decohered into the
completely mixed state is

k
The summation is over all permutations . The probabilities are



Noisy metrology: Simple example I

@ Rewriting it

an/\u Z Mk [ % ®TT1,2 ..... n(@)} n;i = anQn-
n

@ For the noisy state

(AJX > an AJX = an4 = pT

@ Hence, for the precision shot-noise scaling follows

(D62 =

e = 5 OC

(AP _ 1
Ca]

G. Toth, and I. Apellaniz, J. Phys. A: Math. Theor. 47, 424006 (2014).



Noisy metrology: General treatment

@ In the most general case, uncorrelated single particle noise leads
to shot-noise scaling after some particle number.

1.00

0.50

Figure from
R. Demkowicz-Dobrzanski, J. Kotodynski, M. Guta, Nature Comm. 2012.

@ Correlated noise is different.



Take home message

@ Quantum physics makes it possible to obtain bounds for precision
of the parameter estimation in realistic many-particle quantum
systems.

@ Shot-noise limit: Non-entangled states lead to (A9)? > T

1

@ Heisenberg limit: Fully entangled states can lead to (Af)? = “NE-

@ At the end, noise plays a central role.



Reviews

@ M. G. A. Paris, Quantum estimation for quantum technology, Int. J.
Quantum Inf. 7, 125 (2009).

@ V. Giovannetti, S. Lloyd, and L. Maccone, Advances in quantum
metrology, Nat. Photonics 5, 222 (2011).

@ C. Gross, Spin squeezing, entanglement and quantum metrology
with Bose-Einstein condensates, J. Phys. B: At.,Mol. Opt. Phys.
45, 103001 (2012).

@ R. Demkowicz-Dobrzanski, M. Jarzyna, and J. Kolodynski,
Chapter four-quantum limits in optical interferometry, Prog. Opt.
60, 345 (2015).

@ L. Pezze, A. Smerzi, M. K. Oberthaler, R. Schmied, and P.
Treutlein, Non-classical states of atomic ensembles: fundamentals
and applications in quantum metrology, Rev. Mod. Phys. 90,
035005 (2018).



@ We reviewed quantum metrology from a quantum information
point of view.

See:
Géza Téth and lagoba Apellaniz,
Quantum metrology from a quantum information science perspective,

J. Phys. A: Math. Theor. 47, 424006 (2014),
special issue "50 years of Bell’s theorem"
(open access).

Please see the slides at www.gtoth.eu.
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