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Abstract. We study gradient magnetometry for various quantum states. Based on the quantum Fisher information, we calculate precision bounds for estimating the gradient of the 
magnetic field. We consider a 1-dimensional lattice of atoms, two separated ensembles, a single atomic cloud and a Bose-Einstein condensate to model the spatial parts of the 
systems. For quantum states sensitive to the homogeneous magnetic field, a simultaneous estimation of the gradient and the homogeneous field is needed in order saturate our 
bounds. In all the cases we present in this work, we domonstrate that the precision bounds are saturable, and in some cases they can even reach the Heisenberg scaling.

The setup and Cramér-Rao bounds

Representation of an atomic clound in a magnetic field with a gradient term 
different from zero, similar to the Stern-Gerlach apparatus.

In this work, we find bounds for b1, even when the state is sensitive to the 
homogeneous fields. In the last case a simultaneous measurement is needed 
to saturate the bound.

The setup 

For 1D atomic systems, the mag-
netic field can be represented by 
a linear equation as

. 

where                                          . 

For N point-like particles, we 
assume that the state is a 
product of the internal and 
spatial parts,

,

The Interaction Hamiltonian be-
tween the magnetic field and a 
single particle is

where                   . 

,

Colectivelly, the unitary evolution 
operator can be written as

where 

. 

,

Measurements compatibility

The symmetric logarithmic derivative for an arbitrary operator is

The condition for a simultaneous measurement which allows to optimally 
estimate the gradient parameter is 

For point-like particles we have that 

Finally, for permutationally invariant spin states

and for two different permutationally invariant ensembles and product spin 
states, 

in which, in both cases, the condition for a simutalneous measurement holds.
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Cramér-Rao bounds

When computing the CR bounds one must take into account that the 
homogeneous field may affect the state.

The quantum Fisher information for two arbitrary operators is

Bound for states insensitive to the homogeneous fields

Bound for states sensitive to the homogeneous fields

For states insensitive to the homogeneous fields, we can use the CR bound 
for a single parameter,

For point-like particles the matrix elements of the Hamiltonian are

Finally, we arrive at 

The bound is invariant under translations of the system, represented by 

where Px is the collective operator of the linear momentum along x and d is 
the displaced distance.
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For states sensitive to the homogeneous fields a second unkown parameter 
has to be considered, b0. The CR bound becomes into a matrix inequality,

where                                               and                                         .

The bound for the precision of the gradient estimation is

Finally, for point-like particles, the precision bound is

We have that for point-like particles, the matrix elements of the operator 
related to the homogeneous field is
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,

and hence,

.

.

The bound is invariant under translations of the system.

.

For separable states the CR cannot surpass the shot-noise scaling, ~N. The 
ultimate limit is called Heisenberg scaling, ~N2.

Spin-chain and double well

For the spin-chain, we have the following probability distribution function, 
and hence the variance which characterizes the spatial state,

A spin-chain under the 
magnetic field. Initially all 
the spins point to the same 
direction. After the 
interaction the collective 
spin is decreased.

Initial state

Final state

Hence for the totally polarized state,                         , the achievable precision is

and .

.

Similarly, for the double well, we have

and .

The optimal state which maximizes the variance of H1 is

with which we obtain the best achievable precision for a given size, σ2,

.

Interestingly for product states,                           , the achievable precision is    

Note that                    .

.

Hence, we can write the precision bounds for the gradient as a function of the 
precision the state has when estimating the homogeneous field.

States

General bound for internal product states in the double-well

Bose-Einstein condensates Conclusions

In a BEC all the particles share the same spatial state,                                      .

Since the bound is invariant under th translations of the system, we only have 
to compute F11 even if the state is sensitive to the homogeneous fields,

The state that maximizes the QFI is the totally polarized state along the z 
direction,                                      , from which we obtain the bound

Note that the totally polarized state is insensitive to the homogeneous fields, 
so the bound can be saturated and no state can surpass it.

All the bound in this section are saturable, as it was 
shown in "Measurements compatibility".

Single ensemble for gradient estimation - Results for various spin states

Rigth: A cloud of atoms in a gradient mag-
netic field pointing towards the z direction.
Left: Different collective spin polarization 
(red) and uncertainties (green): singlet, 
Dickez, totally polarized, Dickex and GHZ.

Bounds for different internal states

For both Dicke states the precision bounds areThe best posible bound for a separablestate is com-
puted considering that the bound is translationally 
invariant. Hence, we only have to compute the F11, 
which is maximized by the pure state 

The PDF of a single ensemble of particles is permuta-
tionally invariant

For states insensitive to the homogeneous fields, the bound can only scale with N as

For states sensitive to the homogeneous fields, the shot-noise limit can be surpassed The correlation, η, is bounded by
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Any singlet state is in the subspace of all eigenstates of 
Jz and Jz

2 with eigenvalue equal to zero, 

The precision bound is then

This bound can be saturated measuring the 2nd 
moment of Jx,

which is analytically proven to coincide with the bound 
for the short time limit.

For the totally polarizedstate along the y direction, a 
state sensitive to the homogeneous field, we have

Finally, the bound for separable states is

The unpolarized Dicke state, which are symmetric 
eigenstates of the Jl operator are written as  

We are interested in l = x, which is sensitive to the 
homogeneous fields, and l = z, which is not.

To conclude, we present the GHZ state

For estimating the homogeneous field this state 
reaches the Heisenberg limit, (Δb1)-2 ~ N2, and hence, 
the bound for the gradient estimation is

which scales with N2 whenever η is constant. 
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We introduce important quantities, the average position of all particles, the 
variance, and the correlation among the position of the particles.

We are interested in the scaling of 
the bounds as a function of the 
particle number.

Introducing more particles into the 
system could increase improve the 
precision, merely because its size 
increases.

Some interesting properties of the FQ[ϱ, A, B] are: 

· Linear

· A <-> B

· Pure st.

· Convex

We obtained general formulas to compute the precision bounds for 
gradient magnetometry for spin-chains, double-wells, atomic single 
clouds and BECs.

These bounds are based on the internal state of the system.

Among the bounds we presented for an atomic clound, there is the 
bound for the best separable state. 

We proved that all bounds in this work are saturable, in particular if the 
internal spin state is permutationally invariant.
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