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I can explain everything 



Everything is Sandu’s fault! 
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Δ 
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2
 

You cannot measure 

in the basis 



|𝑔 > 

|𝑒 > 
Δ 

|𝑔 > 
|𝑔 > ±|𝑒 >

2
 

𝐸 = 0 𝐸 = Δ/2 

Violates energy 

conservation!!! 



YOU CAN’T  

SHOOT ME! 
IT WOULD VIOLATE 

ENERGY 
CONSERVATION! 





Lots of approximations, infinite energy… 
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𝐻𝑇 = 𝐻𝑠⊗ 𝕀 + 𝕀⊗𝐻𝑠 

Energy conservation demands that 
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Wigner-Araki-

Yanase theorem 

How conservation 

laws limit unitary 

evolution, general 

uncertainty relation 

Resource 

theories 

Studies state estimation 

problems under 

conservation laws 



The measurement model 
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Classical measurement model 

x x 

system 

clock 

pointer 

𝜎 

In general, this interaction 

introduces or subtracts energy 

from the system 
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< 𝜙𝑆𝐵𝑃 |𝑈
∗𝐻𝑇𝑈|𝜙𝑆𝐵𝑃 > =< 𝜙𝑆𝐵𝑃 |𝐻𝑇|𝜙𝑆𝐵𝑃 >  

𝐻𝑇 = 𝐻𝑠⊗ 𝕀𝐵𝑃 + 𝕀𝑆⊗𝐻𝐵⊗ 𝕀𝑃 
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< 𝜙𝑆𝐵𝑃 |𝑈
∗𝐻𝑇𝑈|𝜙𝑆𝐵𝑃 > =< 𝜙𝑆𝐵𝑃 |𝐻𝑇|𝜙𝑆𝐵𝑃 >  

𝐻𝑇 = 𝐻𝑠⊗ 𝕀𝐵𝑃 + 𝕀𝑆⊗𝐻𝐵⊗ 𝕀𝑃 

[𝑈, 𝐻𝑇] = 0 

x 
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< 𝜙𝑆𝐵𝑃 |𝑈
∗𝐻𝑇𝑈|𝜙𝑆𝐵𝑃 > =< 𝜙𝑆𝐵𝑃 |𝐻𝑇|𝜙𝑆𝐵𝑃 >  

𝐻𝑇 = 𝐻𝑠⊗ 𝕀𝐵𝑃 + 𝕀𝑆⊗𝐻𝐵⊗ 𝕀𝑃 

[𝑈, 𝐻𝑇] = 0 

𝐻𝑃 = 0 

We do not want the 

pointer to play the role of 

the battery!! 

x 

system 

battery 

clock 

pointer 



Example: homodyne measurements in quantum optics 

Aim: measure 
𝑎+𝑎𝑡

2
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𝑝 𝑥 = 𝑡𝑟 𝜎𝑀𝑥 , 𝑀𝑥 ≥ 0, 𝑀𝑥
𝑥

= 𝕀 

HS 

x 

𝜎 



𝑝 𝑥 = 𝑡𝑟 𝜎𝑀𝑥 , 𝑀𝑥 ≥ 0, 𝑀𝑥
𝑥

= 𝕀 

𝑀𝑥, 𝐻𝑠 = 0 

HS 

x 

𝜎 



HS 

x 

E 

HS 

x 

Hs, non-degenerate 

𝜎 



HS 

x 

s s’ 

violate Bell inequalities 

prove that their state is entangled 

s, s’ cannot 



Example: quantum optics 
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Example: quantum optics 

N 
Light pulse 

X, Y, Z 



HB 

x 

HS 

x 

system 

battery 

clock 

pointer 

Energy-

conserving 

interaction 
𝑀𝑥 , 𝐻𝑇 = 0 

𝐻𝑇 = 𝐻𝑠⊗ 𝕀𝐵 + 𝕀𝑆⊗𝐻𝐵 

𝑝 𝑥 = 𝑡𝑟 (𝜎 ⊗ 𝜚𝐵)𝑀𝑥 , 
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clock 
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conserving 
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How far can we go with this model? 



{𝑀𝑥} 

∃𝐻𝐵, 𝜌
𝑛 , 

𝑈, s. t. 

HS 

HB 

x 

HS 

x 

𝜎 

𝜌(𝑛) 
𝑈 lim 𝑛→∞ 
= {𝑀𝑥} 



lim 𝑛→∞ 𝑡𝑟(𝜌
(𝑛)𝐻𝐵) → ∞ 

HB 

x 

HS 

x 

𝜎 

𝜌(𝑛) 
𝑈(𝑛) 

𝐻𝐵, infinite dimensional 

Problems 



HB 

x 

HS 

x 

𝜎 

𝜌(𝑛) 
𝑈(𝑛) 

What can we measure 

under reasonable 

assumptions on the 

energy spectrum of the 

battery? 
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HS 
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𝜌 
𝑈(𝑛) 

𝜌(𝐸) 

𝐸 

ℳ(𝑑) 

ℳ(ℬ, 𝑑) 

dimension d 

𝜌(𝐸)𝜖ℬ 
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the energy spectrum of its battery? 
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How is a measurement device limited by 

the energy spectrum of its battery? 

ℳ(𝑑) 

𝜖? 

ℳ(ℬ, 𝑑) 





𝑀0, 𝑀1 

𝑀𝑎𝑥 ≥ 0, 𝑀
𝑎
𝑥

𝑥

= 𝕀 

{𝑀𝑎
𝑥
}𝑥=1,2,3,…. 

ℳ(𝑑) 

𝑀0 

𝑀1 Distance? 



x 

? 
With probability ½, M0

x  

(a=0) 

? 
? 

With probability ½, M1
x  

(a=1) 

s 

What is the value of a? 



Classical Strategy 

x 

a=0,1 

? 𝜎 

𝑃𝐶 =
1

2
1 + 𝑑𝑖𝑠𝑡𝐶(𝑀

0, 𝑀1)  

Optimize over 

all states 𝜎 



Quantum Strategy 

𝑃𝑄 =
1

2
1 + 𝑑𝑖𝑠𝑡𝑄(𝑀

0, 𝑀1)  

Optimize over 

all states 𝜎 

x 

a=0,1 

Nx 

? 

𝜎 



Trivia 

𝑑𝑖𝑠𝑡𝑄 𝑀
0, 𝑀1 , 𝑑𝑖𝑠𝑡𝐶 𝑀

0, 𝑀1 , distances 



Trivia 

1 ≥ 𝑑𝑖𝑠𝑡𝑄 𝑀
0, 𝑀1 ≥ 𝑑𝑖𝑠𝑡𝐶 𝑀

0, 𝑀1 ≥ 0 



Trivia 

x=1,2 

a=0,1 

? 𝜎 
x=1,2 

a=0,1 

Nx 

? 

𝜎 
max 

max 

𝑑𝑖𝑠𝑡𝐶 𝑀
0, 𝑀1 = 𝑑𝑖𝑠𝑡𝑄 𝑀

0, 𝑀1  



Trivia 

x 

a=0,1 

? 𝜎 
x 

a=0,1 

Nx 

? 

𝜎 
max 

max 

𝑑𝑖𝑠𝑡𝐶 𝑀
0, 𝑀1 ≠ 𝑑𝑖𝑠𝑡𝑄 𝑀

0, 𝑀1  

ℂ2 

ℂ2 



ℳ(𝑑) 

ℳ 

𝜖? 

𝜖𝐶,𝑄 = max{𝑑𝑖𝑠𝑡𝐶,𝑄(𝑀,ℳ):𝑀 ∈ ℳ(𝑑)} 

M 



ℳ(𝑑) 

ℳ 

𝜖? 

𝜖𝐶,𝑄 = max{𝑑𝑖𝑠𝑡𝐶,𝑄(𝑀,ℳ):𝑀 ∈ ℳ(𝑑)} 

x 

? 

ℳ,ℳ(𝑑) 
 

s 





HB 

x 

HS 

x 

𝜎 

𝜌 
𝑈(𝑛) 

𝜌(𝐸) 

𝐸 

dimension d 

ℳ(𝑑) 

𝜖? 

ℳ(ℬ, 𝑑) 



The qubit case 



𝜌(𝐸)𝜖ℬ HB 

x x 

𝜎 

𝜌 
𝑈(𝑛) 

|𝑔 > 

|𝑒 > 
Δ 

HS 

ℳ(2) 

ℳ(ℬ) 

𝜖? 



𝜌(𝐸)𝜖ℬ 

𝜏 = max 𝜌
1
2 𝐸 𝜌

1
2 𝐸 + Δ 𝑑𝐸

∞

0

 

HB 

x x 

𝜎 

𝜌 
𝑈(𝑛) 

|𝑔 > 

|𝑒 > 
Δ 

HS 

ϱ ∈ ℬ 

𝜖𝐶 = 𝜖𝑄 =
1

2
(1 − 𝜏) 

ℳ(2) 

𝜖? 

ℳ(ℬ) 



𝜏 = max 𝜌
1
2 𝐸 𝜌

1
2 𝐸 + Δ 𝑑𝐸

∞

0

 

“The closer to 1, the more we can measure” 



𝜌(𝐸) 

𝐸 

Δ Δ Δ Δ 
𝜌(𝐸) 

𝐸 

Δ Δ Δ Δ 

𝜏 ≈ 1 𝜏 ≈ 0 

𝜏 = max 𝜌
1
2 𝐸 𝜌

1
2 𝐸 + Δ 𝑑𝐸

∞

0
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Case of interest: battery with finitely many energy levels 

|𝑔 > 

|𝑒 > 
Δ 

HS 

HB 

D energy 

levels 

Δ 

Δ 

Δ 

Optimal battery 

𝜏 = max 𝜌
1
2 𝐸 𝜌

1
2 𝐸 + Δ 𝑑𝐸

∞

0

 

ϱ(𝐸) =  𝑝𝑘𝛿(𝐸 − Δ𝑘)

𝐷−1

𝑘=0

 



Case of interest: battery with finitely many energy levels 

𝜏 = cos
𝜋

𝐷 + 1
 

ε𝐶,𝑄 =
1

2
1 − cos

𝜋

𝐷 + 1
≈ 𝑂

1

𝐷2
 

ℳ(2) 

ℳ(2,𝐷) 

𝜖? 





Case of interest: battery with finite average energy 
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HS 

HB 

𝐸0 = 0 

 𝜚 𝐸 𝐸𝑑𝐸 ≤ 𝐸 
∞

0

 



|𝑔 > 

|𝑒 > 
Δ 

HS 

𝜏 = max 𝜌
1
2 𝐸 𝜌

1
2 𝐸 + Δ 𝑑𝐸

∞

0

 

 𝜚 𝐸 𝐸𝑑𝐸 ≤ 𝐸 
∞

0

 

HB 

𝐸0 = 0 

Case of interest: battery with finite average energy 
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Case of interest: battery with finite average energy 
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Δ
 

𝜑 𝑧 = 𝑚𝑖𝑛𝜆≥0
𝑧 + 𝜇(𝜆)

2𝜆
 

𝑗𝜇(𝜆)−1,1 = 2𝜆 

𝑗𝑛,1 ≡1st positive zero of 𝐽𝑛(𝑥) 

Case of interest: battery with finite average energy 



𝜏 = 𝜑
𝐸 

Δ
 

𝜑 𝑧 = 𝑚𝑖𝑛𝜆≥0
𝑧 + 𝜇(𝜆)

2𝜆
 

𝜑 𝑧 ≈ 1 −
0.9468

𝑧2
 

𝑧 ≫ 1 

Case of interest: battery with finite average energy 



ε𝐶,𝑄 =
1

2
1 − 𝜑

𝐸 

Δ
≈
0.4734∆2

𝐸 2
 

ℳ(2) 

ℳ(2, 𝐸 ) 

𝜖? 

𝐸 ≫ Δ 

Case of interest: battery with finite average energy 



ℳ(2) 

ℳ(2, 𝐸 ) 

𝜖? 

𝜌∗ = |𝜓𝐸 >< 𝜓𝐸 | 
 

𝜏 = max 𝜌
1
2 𝐸 𝜌

1
2 𝐸 + Δ 𝑑𝐸

∞

0

 

 𝜚 𝐸 𝐸𝑑𝐸 ≤ 𝐸 
∞

0

 

Power states Optimal states 

Case of interest: battery with finite average energy 



|𝜓𝐸 > =  𝑐𝑘|𝑘 >
∞
𝑘=0  

𝐻𝐵|𝑘 > = Δ𝑘|𝑘 > 

𝑐𝑘+1 =
𝑘 + 𝜇(𝜆∗)

𝜆∗
𝑐𝑘 − 𝑐𝑘−1 

HB 

𝐸0 = 0 

Power states |𝜓𝐸 > 

Case of interest: battery with finite average energy 



|𝜓𝐸 > =  𝑐𝑘|𝑘 >
∞
𝑘=0  

Comparison with coherent states 

|𝛼 > = 𝑒− 𝛼
2/2 

𝛼𝑘

𝑘!
|𝑘 >∞

𝑘=0  

|𝛼|2 = 𝐸  

τ ≈ 1 −
Δ

8𝐸 
 

τ ≈ 1 −
0.9468∆2

𝐸 2
 





Characterizations 



ℳ(2) 

ℳ(ℬ) 

𝜖? 



ℳ(2) 

ℳ(ℬ) 
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Can I realize M with the 

battery restriction ℬ? 
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𝜌 
𝑈(𝑛) 

HB 

Finitely 

many 

energy 

levels 

The membership problem can be 

decided by a single semidefinite 

program (SDP). 

ℳ(2) 

ℳ(ℬ) 

M 



x x 

𝜎 

𝜌 
𝑈(𝑛) 

HB 

Finitely 

many 

energy 

levels 

Our algorithm also returns an 

implementation of M. 

ℳ(2) 

ℳ(ℬ) 

M 



x x 

𝜎 

𝜌 
𝑈(𝑛) 

HB 

Finitely 

many 

energy 

levels 

It is highly efficient: it allowed us to 

perform optimizations involving 

more than 4000 energy levels in a 

normal desktop. 

ℳ(2) 

ℳ(ℬ) 

M 



x x 

𝜎 

𝜌 
𝑈(𝑛) 

ℳ(2) 

ℳ(ℬ) 

M 

HB 

𝐸0 = 0 

 𝜚 𝐸 𝐸𝑑𝐸 ≤ 𝐸 
∞

0

 



x x 

𝜎 

𝜌 
𝑈(𝑛) 

Most likely, the membership problem 

cannot be decided by a single 

semidefinite program (SDP). 

ℳ(2) 

ℳ(ℬ) 

M 

HB 

𝐸0 = 0 

 𝜚 𝐸 𝐸𝑑𝐸 ≤ 𝐸 
∞

0

 



Hierarchies of SDPs 
ℳ(2) 

ℳ1(𝐸, 2) 

ℳ2(𝐸, 2) 

ℳ3(𝐸, 2) 

ℳ1(𝐸, 2) 

ℳ2(𝐸, 2) 

ℳ3(𝐸, 2) 



Hierarchies of SDPs 

𝜀𝑄 ℳ𝑑 𝐸, 2 ,ℳ
𝑑 𝐸, 2 ≤ 𝑂

Δ

𝐸 𝑑
 



Higher dimensions 



x x 

𝜎 

𝜌 
𝑈(𝑛) 

HB 

Finitely 

many 

energy 

levels 

The membership problem can be 

decided by a single semidefinite 

program (SDP). 

ℳ(𝑑) 

ℳ(ℬ) 

M 



x x 

𝜎 

𝜌 
𝑈(𝑛) 

Hierarchy of SDPs 

ℳ(𝑑) 

ℳ(ℬ) 

M 

HB 

𝐸0 = 0 

 𝜚 𝐸 𝐸𝑑𝐸 ≤ 𝐸 
∞

0

 



Conclusions 



1) We have quantified how measurements of a qubit depend on the 

energy spectrum of the measurement device. 

𝜌(𝐸)𝜖ℬ HB 

x x 

𝜎 

𝜌 
𝑈(𝑛) 

|𝑔 > 

|𝑒 > 
Δ 

HS 

ℳ(2) 

ℳ(ℬ) 

𝜖? 



2) We have characterized measurements generated by measurement 

devices with reasonable assumptions on the energy spectrum, like finite 

energy or finite dimensionality. 

ℳ(𝑑) 

ℳ(ℬ) 

M 





1) Study measurements in a qudit. 

HS 

HB 

Effects of self-resonances? 



2) Characterize thermodynamical operations 
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2) Characterize thermodynamical operations 

HB 

x 

HS 

system 

battery 

clock 

Energy-

conserving 

interaction 
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HS 




