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Lots of approximations, infinite energy...
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Classical measurement model
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We do not want the
pointer to play the role of

the battery!!

§
HT=HS®HBP+H5®HB®HPj> Hp, =0




Example: homodyne measurements in quantum optics
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Example: quantum optics
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How far can we go with this model?
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What can we measure
under reasonable
assumptions on the
energy spectrum of the
battery?
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How Is a measurement device limited by
the energy spectrum of its battery?
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What is the value of a?
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Trivia
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1 > disto(M°, M) = distc(M°,M*) = 0
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The qubit case
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“The closer to 1, the more we can measure”
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Case of interest: battery with finitely many energy levels
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Case of interest: battery with finitely many energy levels
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Case of interest: battery with finite average energy
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Case of interest: battery with finite average energy
M (2)
z o1 1
T = maxf p2(E)p2(E + A)dE
0

f o(E)EdE < E
0

Optimal states Power states
p” =Yg >< gl



Case of interest: battery with finite average energy
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Comparison with coherent states
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Characterizations
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The membership problem can be

decided by a single semidefinite HB
program (SDP). ™
Finitely
many
energy
levels
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Our algorithm also returns an

implementation of M. HB
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It is highly efficient: it allowed us to

perform optimizations involving HB
more than 4000 energy levels in a ™
normal desktop. Finitely
many
energy
levels
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Most likely, the membership problem
cannot be decided by a single
semidefinite program (SDP).
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Hierarchies of SDPs




Hierarchies of SDPs
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Higher dimensions
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Conclusions



1) We have quantified how measurements of a qubit depend on the
energy spectrum of the measurement device.
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2) We have characterized measurements generated by measurement
devices with reasonable assumptions on the energy spectrum, like finite
energy or finite dimensionality.

M (d)






1) Study measurements in a qudit.
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2) Characterize thermodynamical operations
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