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The plan for today

Quantum Walks as simulators for solid state

Topological insulators: interesting Hamiltonians to simulate

Extra topological invariants of quantum walks

Two methods to measure topological invariants, with 
disorder:

- Using scattering matrices
- Using weak measurement & expected displacement
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Insulator: has bulk energy gap separating fully occupied 
bands from fully empty ones

(includes superconductors in mean-field, 
  using Bogoliubov-de Gennes trick)

Bulk: 
  -simple, can be clean,
  -most of the energy states
  -decides insulator/conductor

Boundary/edge: 
   -disordered
   -few of the energy states
   -can hinder contact



  

Topological Insulator: has protected, extended midgap 
states on surface, which lead to robust, quantized physics



  

2D Chern Insulators: 1-way 
conducting states
→ no backscattering
→ perfect edge conduction



  

 “Why call them Topological Insulators?”
 a) Robust physics at the edge (2D: conductance 
    via edge state channels) quantified by small integers

1D, quantum wire: 
   # of topologically protected 
    0-energy states at ends of wire

3D: 
   # of Dirac cones on surface

Cannot change by continuous deformation that 
leaves bulk insulating
 → TOPOLOGICAL INVARIANT



  

“Why call them Topological Insulators?”
 b) Bulk description has a topological invariant, generalized 
     “winding” in Brillouin Zone

Example: 2D, two levels: 

Mapping from d-dimensional torus to Bloch sphere

More general 2D: Chern number of 
occupied bands



  

Central, beautiful idea of Topological Insulators:
Bulk—boundary correspondence:
“winding number” of bulk = # of edge states

Central aim of the course: 
prove bulk—boundary correspondence 
for the 2-dimensional case

 gather tools, build intuition

generalize/understand

weeks 1-5:

week 6:

weeks 7-10:

Further accessible sources:
- 3 lectures by Charles Kane (youtube)
- online course by Akhmerov&friends   topocondmat.org



  

Theory of topological insulators is quite 
developed. Example: periodic table 

Schnyder et al, NJP (2010)
Teo & Kane, PRB (2010)
Fulga et al, PRB (2012)



  

Quantum Walks can simulate Topological 
Insulators. They can be similar to a solid 

split-step quantum walk on cubic lattice (3D, 2D, 1D)

Element 1: coin- (spin-) dependent shift,

Element 2: unitary rotation of coin (spin)

Quantum Walk discrete time evolution:

Timestep operator:



  

Quantum Walk can simulate topological insulators via the 
(Floquet) Hamiltonian Heff . Intuitive understanding 

Long-time behaviour: eigenstates of timestep operator U
Translation invariant “bulk”: momentum k good quantum number

Eigenstates of the walk are eigenstates of Heff

Stroboscopic simulation of time-independent Heff
       (coincide at integer times t)

Explains ballistic spread



  

Kitagawa et al, 2010: recipes for quantum walks to 
simulate topological insulators via Heff

[Kitagawa, Rudner, Berg, Demler, PRA (2010)] → 233 citations

Recipes in 1D, 2D: how to realize all symmetry classes



  

Experiment, 2011 (White’s group): 
1-D split-step quantum walk on photons ...

 [Kitagawa et al, Nat Comm (2012)]

1-D split-step quantum walk, create interface by tuning 
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… experiment saw edge states where theory did 
not predict them

 [Kitagawa et al, Nat Comm (2012)]

Pair of bound states at 
quasienergy 0 and π

protected, but not 
predicted

What is the bulk 
topological invariant?



  

Kitagawa, 2011: protected edge state in 2-
dimensional quantum walk, no bulk topological 

invariant

 [Kitagawa, Quantum Information Processing (2012)]

2-D split-step quantum walk has edge states at interface, 
even though Chern number = 0

What is the bulk topological invariant?



  

We found the bulk topological invariant for both 
mysterious types of edge states

2-dimensional quantum walks without symmetry:
[Asboth & Edge, Phys Rev A (2015)]
by mapping to model of Rudner et al, Phys. Rev. X (2013)

- affects localization in 2D quantum walks [Edge & Asboth, Phys Rev B (2015)]
- can be measured by pseudomagnetic field [Asboth & Alberti, Phys Rev Lett (2017)]

1-dimensional chiral symmetric quantum walks:
2 topological invariants
[Asboth & Obuse Phys Rev B (2013)]
[Asboth, Tarasinski, Delplace, Phys Rev B (2014)]
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First method, borrowed from Hamiltonians: 
measure the scattering matrix

Topological 
Insulator

Normal 
Insulator

Metal

Are there bound states at zero 
energy between the two insulators? 

Does an electron interfere constructively 
with itself? Bohr-Sommerfeld quantization

[Fulga, Hassler, Akhmerov, Phys. Rev. B (2012)]

[Fulga, Hassler, Akhmerov, Beenakker, Phys. Rev. B (2011)]

Simple formulas for all symmetry classes in 1D

Generalizes via dimensional reduction to all dimensions, symmetry classes



  

To define the scattering matrix, the system needs 
to be “opened up”

1) Open up the system 
2) Attach leads
3) Define scattering matrix S

Mahaux-Weidemüller formula for 
continuous-time sytems: 

Rewritten for discrete-time systems by 
Fyodorov&Sommers: 



  

Can be transcribed to quantum walk on beam 
splitter array

Introduce light from one edge at every timestep

Measure 
transmission

Measure 
reflection

→ Measure reflection after transients

Introduce light only at t=0, 
→ Measure reflection at every t

[B Tarasinski, JK Asbóth, JP Dahlhaus, Phys Rev A (2014)]



  

Experiment using our proposal: 
2017, Silberhorn group

[Barkhofen et al, Phys. Rev. A (2017)]

Previously demostrated: 
fluctuating disorder

→ diffusion
time-independent disorder

→ Anderson localization
 [Schreiber et al, PRL (2011)]

- Implemented scattering setup 
- Quantized reflection amplitudes 
- Also with time-independent 

disorder (localized)
- Transition smoothened by

finite sampling time
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Second method, generalizing results of 
Rudner & Levitov about non-Hermitian SSH model

γ=0 : Su-Schrieffer-Heeger (SSH) model for polyacetylene (1979)
 mother of all topological insulators

γ>0 : added by Rudner & Levitov to represent losses
→ Nonhermitian Hamiltonian for conditional time evolution. 

Condition: no decay events. 
Norm of wavefunction = prob(condition holds)

[Rudner and Levitov, Phys. Rev. Lett. (2009)]



  

Rudner and Levitov (2009): Nonhermitian SSH, 
expected displacement until decay = top. inv.

Insert single particle 
at m=0, A

When decay happens, collect particle. Position of decay=displacement until decay

topological proof: mapping to a winding number



  

Our questions

● Is Rudner & Levitov result general, or only specific to two-
band model? (Their proof only works for two-band model)

● Is it valid for disordered systems? 
● How to translate this to periodically driven systems? 

pair of winding numbers at E=0, E=π [Asboth & Obuse, PRB (2013)] 

energy → quasienergy E



  

The way to realize losses is by weak measurement 
on sublattice B at the end of each driving cycle



  

Continue time evolution until particle is detected



  

Expected displacement 
Δx⟩= topological invariant υ/N  x = topological invariant υ/N  ⟨Δx⟩= topological invariant υ/N  ⟩= topological invariant υ/N  



  

In the disordered case, averaging over initial 
position is needed:    Δx⟩= topological invariant υ/N  x =υ/N⟨Δx⟩= topological invariant υ/N  ⟨Δx⟩= topological invariant υ/N  ⟩= topological invariant υ/N  ⟩= topological invariant υ/N  



  

We proved Δx⟩= topological invariant υ/N  x =υ using non-commutative ⟨Δx⟩= topological invariant υ/N  ⟨Δx⟩= topological invariant υ/N  ⟩= topological invariant υ/N  ⟩= topological invariant υ/N  
geometry formulation of winding number

Used this before on quantum walk, compared to scattering formulation of topological 
invariant [Rakovszky & Asboth, PRA (2015)]

Noncommutative geometry for topological insulators: Lori & Hastings, Prodan
for chiral symmetric (AIII): Mondragon-Shem et al, PRL (2014)



  

Fast readout can require weak measurement, if 
almost-dark states are present



  

Experiment using our proposal: 
2017, Peng Xue’s group



  

Topological invariants using displacement: 
Open questions, related work

● Does something like this work in 3 dimensions?
● Massignan & collaborators have since found similar 

results for Δx⟩= topological invariant υ/N  x  defined for Hermitian Hamiltonians, in ⟨Δx⟩= topological invariant υ/N  ⟩= topological invariant υ/N  
long-time limit. Precise equivalence? 
 



  

Summary of this talk

● Quantum Walks as simulators for solid state

Topological insulators: interesting Hamiltonians to 
simulate

● Extra topological invariants of quantum walks
● Two methods to measure topological invariants, with 

disorder:
- Using scattering matrices
- Using weak measurement & expected displacement

Detecting topological invariants in chiral symmetric insulators via losses
T Rakovszky, JK Asbóth, A Alberti, Phys Rev B (2017)

Scattering theory of topological phases in discrete-time quantum walks
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