
On quantum Wasserstein distance

József Pitrik
Wigner Research Centre for Physics, Budapest

Common work with Géza Tóth, Gergely Bunth, Dánel Virosztek and
Tamás Titkos

József Pitrik OT: classical and quantum 1 / 47



Dedicated to the memory of Dénes Petz (1953 – 2018) on the occasion of
his 70th birthday.

Prof. Dénes Petz and Prof. Fumio Hiai at the end of the ’90s

József Pitrik OT: classical and quantum 2 / 47



1 The classical (Monge-Kantorovich) optimal transport problem
Monge Formulation
Kantorovich Formulation

2 Wasserstein spaces
p-Wasserstein distance
Wasserstein barycenters

3 Quantum optimal transport
Basics
Transport by quantum couplings
Transport by quantum channels
Our contribution

József Pitrik OT: classical and quantum 3 / 47



Classical optimal transport Monge Formulation

What is Optimal Transport (OT)?

The optimal transport problem seeks the most efficient way of
transporting one distribution of mass into another.
The problem was originally studied by Gaspard Monge in 1781:
“Given a pile of sand and a pit of equal volume, how can one optimally
transport the sand into the pit?”
In: Mémoire sur la théorie des déblais et les remblais (Note on the
theory of land excavation and infill)
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Classical optimal transport Monge Formulation

The classical optimal transport problem - Monge
Formulation

X – sand space : complete separable metric space with its Borel
σ-algebra
Y – pit space : complete separable metric space with its Borel
σ-algebra
µ ∈ P(X ) the sand distribution - probability measure over X
ν ∈ P(Y ) the shape of the pit - probability measure over Y
c : X × Y → [0,∞] Borel measurable cost function: c(x , y)
represents the cost of moving a unit of mass from x ∈ X to y ∈ Y
T : X → Y transport map
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Classical optimal transport Monge Formulation

The map T : X → Y must be mass-preserving:

µ(T−1(B)) = ν(B), for all B ⊂ Y Borel

ν ∈ P(Y ) is push-forward measure of µ ∈ P(X ) under the map T if

(T#µ)(B) := µ(T−1(B)) = ν(B),

for all B ⊂ Y Borel measurable set. In other words if X is a random
variable such that Law(X ) = µ, then

Law(T (X )) = T#µ.
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Classical optimal transport Monge Formulation

The total transport cost of the map T : X → Y :

C (T ) :=

∫
X
c(x ,T (x))dµ(x)

The Monge problem
For given µ ∈ P(X ), ν ∈ P(Y ) and c : X × Y → [0,∞] to find the
optimal transport map T : X → Y , i.e. to solve

inf{C (T ) =

∫
X
c(x ,T (x))dµ(x) : T#µ = ν}
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Classical optimal transport Monge Formulation

What can we say about the solution of the Monge problem?

A transport map may not exist!
For example if µ = δx0 is the Dirac measure at some x0 ∈ X but ν is not,
then the set B = {T (x0)} satisfies

µ(T−1(B)) = 1 > ν(B),

so no such T can exist! Why?
Because the mass at x0 must be sent to a unique point T (x0), i.e. splitting
the grains of sand is not allowed!
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Classical optimal transport Monge Formulation

Remarks:
The existence and the uniqueness of the solution depend heavily on
the structure of the space, and on the cost function.
Monge originally considered the case X = Y = R3, and the cost was
the Euclidean distance c(x , y) = ‖x − y‖. This original problem was
extremely difficult, and the Academy of Paris offered a prize for its
solution.
The existence thory for the Monge problem was not fully understood
until 1995. (Brenier ’87, Gangbo & McCann ’95.)
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Classical optimal transport Monge Formulation

In the case

X = Y = Rn, c(x , y) = ‖x − y‖p, 0 < p <∞,

µ, ν are compactly supported:

For p > 1, if µ, ν are absolutely continous with respect to Lebesgue
measure, then there is a unique solution to the Monge problem.
For p = 2 and n ≥ 2 the unique optimal transport map is T = ∇ϕ for
some convex function ϕ : Rn → R.
For p = 1, if µ, ν are absolutely continous with respect to Lebesgue
measure, then there are solutions of the Monge problem, but there is
no uniqueness.
For p < 1, there is in general no solution of the Monge problem,
except if µ and ν are concentrated on disjoint sets.
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Classical optimal transport Kantorovich Formulation

The classical optimal transport problem - Kantorovich
Formulation

Working on optimal allocation of scarce resources during World War II,
Kantorovich revisited the optimal transport problem in 1942.
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Classical optimal transport Kantorovich Formulation

The classical optimal transport problem - Kantorovich
Formulation

X – sand space : complete separable metric space with its Borel
σ-algebra
Y – pit space : complete separable metric space with its Borel
σ-algebra
µ ∈ P(X ) the sand distribution - probability measure over X
ν ∈ P(Y ) the shape of the pit - probability measure over Y
c : X × Y → [0,∞] Borel measurable cost function: c(x , y)
represents the cost of moving a unit of mass from x ∈ X to y ∈ Y
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Classical optimal transport Kantorovich Formulation

Instead of transport maps, we consider probability measures on the product
space X × Y . If π ∈ P(X × Y ), then π(A× B) is the amount of sand
transported from the subset A ⊆ X into the part of the pit represented by
B ⊆ Y .

The total mass sent from A is π(A×Y ), and the total mass sent to B
is π(X × B).
π is mass-preserving iff

π(A× Y ) = µ(A) for all A ⊂ X Borel

π(X × B) = ν(B) for all B ⊂ Y Borel

A probability measure π satisfying these conditions will be called coupling
or transport plan of µ and ν.
The set of such couplings is denoted by Π(µ, ν).
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Classical optimal transport Kantorovich Formulation

If π ∈ Π(µ, ν), then π|X = µ and π|Y = ν are the marginals.
Π(µ, ν) is never empty: it always contains the product measure µ⊗ ν
defined by [µ⊗ ν](A× B) = µ(A)ν(B)

1

1Source: Wikipedia
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Classical optimal transport Kantorovich Formulation

Transport map vs. coupling

Let T : X → Y satisfy T#µ = ν. Consider the map

Id × T : X → X × Y , x 7→ (x ,T (x)),

and define
πT := (Id × T )#µ ∈ P(X × Y ).

Then πT ∈ Π(µ, ν), i.e.

πT |1 = µ and πT |2 = ν.
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Classical optimal transport Kantorovich Formulation

The total cost associated with π ∈ Π(µ, ν) is

C (π) =

∫
X×Y

c(x , y)dπ(x , y).

The Kantorovich problem
For given µ ∈ P(X ), ν ∈ P(Y ) and c : X × Y → [0,∞] to find the
optimal transport plan π ∈ Π(µ, ν), i.e. to solve

inf{C (π) =

∫
X×Y

c(x , y)dπ(x , y) : π ∈ Π(µ, ν)}

Probabilistic view:

inf
(X ,Y )

{E[c(X ,Y )] : X ∼ µ and Y ∼ ν}

Both the objective function C (π) and the constraints for the coupling are
linear in π, so the problem can be seen as infinite-dimensional linear
programming.
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Classical optimal transport Kantorovich Formulation

In 1975, Kantorovich shared the Nobel Memorial Prize in Economic
Sciences with Tjalling Koopmans “for their contributions to the theory of
optimum allocation of resources.”
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Classical optimal transport Kantorovich Formulation

In the case of discrete probability densities, with the transport plan

π(xi , yj) ≥ 0

such that ∑
j

π(xi , yj) = pi ,
∑

i

π(xi , yj) = qj ,

the problem becomes linear optimization with linear constaints:

min
π

∑
i

∑
j

c(xi , yj)π(xi , yj)

that can be solved via simplex algorithm.
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Classical optimal transport Kantorovich Formulation

Kantorovich vs. Monge

The Kantorovich problem admits a solution when the cost is continous.
The Kantorovich problem is a relaxation of the Monge problem,
because to each transport map T one can associate a coupling πT , by

πT (A× B) := µ(A ∩ T−1(B)), for all Borel A ⊆ X , B ⊆ Y

with the same cost, i.e. C (T ) = C (πT ).
It follows that

inf
T :T#µ=ν

C (T ) = inf
πT :T#µ=ν

C (π) ≥ inf
π∈Π(µ,ν)

C (π) = C (π∗),

for some optimal π∗.
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Wasserstein spaces p-Wasserstein distance

What is a Wasserstein space?

Let Wp(X ) be the set of Borel probability measures with finite p’th
moment defined on a given complete separable metric space (X , d):

Wp(X ) =

{
µ ∈ P(X )

∣∣∣∣ ∫
X
d(x , x̂)p dµ(x) <∞ for some x̂ ∈ X

}
.

The p-Wasserstein metric Wp, for p ≥ 1 on Wp(X ) is then defined
as the optimal transport problem with the cost function
c(x , y) = dp(x , y). For µ, ν ∈ Wp(X )

Wp (µ, ν) :=

(
inf

π∈Π(µ,ν)

∫
X 2

d(x , y)p dπ(x , y)

) 1
p

.

where Π(µ, ν) =
{
π ∈ P

(
X 2) ∣∣π|1 = µ, π|2 = ν

}
is the collection of

all transport plans between µ and ν.
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Wasserstein spaces p-Wasserstein distance

The space of sufficiently concentrated probability measures Wp(X )
endowed with the metric Wp is a separable and complete metric space,
called p–Wasserstein space.

Example: quadratic Wasserstein distance of two Gaussians
P = N (m,C ) is a normal distribution on Rn if its probability density
function is

p(x) =
exp

(
−1

2(x −m)TC−1(x −m)
)√

(2π)n detC
,

where m ∈ Rn is its expected value and C is a symmetric postive-definite
n × n matrix, the covariance matrix.
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Wasserstein spaces p-Wasserstein distance

If P1 = N (m1,C1) and P2 = N (m2,C2), then their 2-Wasserstein
distance, wrt. the usual Euclidean norm on Rn is

W2(P1,P2)2 = ‖m1 −m2‖22 + Tr (C1 + C2 − 2(C 1/2
2 C1C

1/2
2 )1/2).

Fun fact: if ρ1 and ρ2 are density matrices, then their Bures distance DB is
given by

D2
B(ρ1, ρ2) = Tr

(
ρ1 + ρ2 − 2(ρ

1/2
2 ρ1ρ

1/2
2 )1/2

)
,

and their fidelity is

F (ρ1, ρ2) = Tr (ρ
1/2
2 ρ1ρ

1/2
2 )1/2.
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Wasserstein spaces p-Wasserstein distance

In general if (X ,Σ) is a measurable space and P(X ) is the space of
probability measures on X , there is a lot of possibility to define distances
and divergences between two diributions P,Q ∈ P(X ) to measure their
dissimilarity:

The Total Variation (TV) distance

TV (P,Q) = sup
A∈Σ
|P(A)− Q(A)|.

The Kullback-Leibler divergence (KL)

KL(P||Q) =

{∫
X log

(
p(x)
q(x)

)
p(x)dµ(x), if supp (P) ∩ kerQ = {0}

+∞, if supp (P) ∩ kerQ 6= {0},

where P(A) =
∫
A p(x)dµ(x) and Q(A) =

∫
A q(x)dµ(x) for all A ∈ Σ.
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Wasserstein spaces p-Wasserstein distance

The Jensen-Shannon divergence (JS)

JS(P,Q) = KL(P||M) + KL(Q||M),

where M = P+Q
2 is the mixture.

These distances are useful, but they have some drawbacks:
1 We cannot use them to compare P and Q when one is discrete and

the other is continous.
2 These distances ignore the underlying geometry of the space.
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Wasserstein spaces p-Wasserstein distance

Example

TV (P,Q) =

{
1− p if Θ 6= 0
0 if Θ = 0

KL(P||Q) =

{
+∞ if Θ 6= 0
0 if Θ = 0
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Wasserstein spaces p-Wasserstein distance

JS(P,Q) = (1− p) log 2
The 1-Wasserstein (Earth-Mover) distance depends on Θ !

W1(P,Q) = Θ(1− p)

Thus, the Wasserstein metric on probability spaces is sensitive to the
“underlying” metric!
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Wasserstein spaces Wasserstein barycenters

Wasserstein barycenters

When we average different objects – such as distributions, data sets or
images – we would like to make sure that we get back a similar objects.
Suppose we have a set of distributions P1,P2, . . . ,Pn. How do we
summarize these distributions with one “typical” distribution? We could
take the average or Euclidean barycenter:

1
n

n∑
i=1

Pi .

A generalization of the average is the following. Let (X , d) be a metric
space. The barycenter of the points x1, x2, . . . , xn ∈ X is defined by

BCd (x1, x2, . . . , xn) = arg min
x

1
n

n∑
i=1

d2(x , xi ).
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Wasserstein spaces Wasserstein barycenters

Example 12

Top: Five distibutions. Bottom left: Euclidean average of the distributions.
Bottom right: 1-Wasserstein barycenter.

2Kolouri et al. Optimal Mass Transport: Signal processing and machine-learning
applications. IEEE Signal Processing Magazine 34(4) (2017):43–59.
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Wasserstein spaces Wasserstein barycenters

Example 23

Top: We take some random cirles and take a uniform distibution on each
circle. Bottom left: Euclidean average of the distributions. Bottom right:
1-Wasserstein barycenter.

3Kolouri et al. Optimal Mass Transport: Signal processing and machine-learning
applications. IEEE Signal Processing Magazine 34(4) (2017):43–59.
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Quantum optimal transport Basics

Basics of quantum optimal transport

several different approaches:
Biane and Voiculescu (free probability)
Carlen and Maas (dynamical interpretation)
Golse, Mouhot, and Paul (static interpretation)
De Palma and Trevisan (quantum channels)
Życzkowski and Słomczyński (semi-classical approach)

most relevant approaches for us are that of Golse-Mouhot-Paul4 and
De Palma-Trevisan5

4F. Golse, C. Mouhot and T. Paul, On the mean-field and classical limits of quantum
mechanics, Commun. Math. Phys., 343 (2016), 165–205.

5G. De Palma and D. Trevisan, Quantum optimal transport with quantum channels,
Ann. Henri Poincaré 22 (2021), 3199–3234.
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Quantum optimal transport Basics

Classical vs Quantum: a dictionary

X ,Y spaces (sand and pit) ↔ H,K Hilbert spaces
x ∈ X ↔ |ψ〉 ∈ H ket vectors

X × Y product spaces ↔ H⊗K tensor product
P(X ) prob. measures on X ↔ S(H) quantum state space

(psd operators, with trace 1)
µ, ν ∈ P(X ) ↔ ρ, σ ∈ S(H) quantum states

δx Dirac measures ↔ |ψ〉〈ψ| ∈ S(H) pure states
(1-rank projections )
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Quantum optimal transport Basics

π ∈ P(X × Y ) joint distributions ↔ Π ∈ S(H⊗K) bipartite states

pi =
∑

j

π(xi , yj), qj =
∑

i

π(xi , yj) ↔ ρ = TrKΠ, σ = TrHΠ

marginal distributions marginal states
T : X → Y transport map ↔ Φ : S(H)→ S(K) CPTP maps

( quantum channels )
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Quantum optimal transport Basics

Basics of non-commutative optimal transport

when measuring an observable quantity A on a quantum system being
in the state ρ ∈, the probability of the outcome lying in an interval
[a, b] ⊂ R is trH (ρEA ([a, b])) , where EA is the spectral measure of A
a quantum state encapsulates several classical probability distributions,
each corresponding to a physical quantity we are interested in
let A(1), . . . ,A(k) be observable quantities, let us fix the initial state ρ1
and the final state ρ2

let X (j)
i denote the random variable obtained by measuring A(j) in ρi ,

that is, P
(
X (j)

i ∈ [a, b]
)

= trH
(
ρi E (j) ([a, b])

)
so the squared OT distance of the quantum states ρ1, ρ2 ∈ should
read as

D2 (ρ1, ρ2) = inf(
X (1)

i ,...,X (k)
i

)
is given by ρi (i∈{1,2})


k∑

j=1

E
(
X (j)

1 − X (j)
2

)2

 .
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Quantum optimal transport Transport by quantum couplings

QOT via quantum couplings

The approach of Golse, Mouhot and Paul6

quantum couplings are defined as

C (ρ, ω) = {π ∈ S (H⊗H) | tr2π = ρ, tr1π = ω} ,

cost operators

C =
M∑

j=1

(Aj ⊗ I − I ⊗ Aj)
2

where Aj ∈ Lsa (H) .

optimal transport cost:

D2
C (ρ, ω) = inf

π∈C(ρ,ω)
trπC

6F. Golse, C. Mouhot and T. Paul, On the mean-field and classical limits of quantum
mechanics, Commun. Math. Phys., 343 (2016), 165–205.
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Quantum optimal transport Transport by quantum channels

QOT via quantum channels

Recall: in the classical case, for T : X → Y satisfying T#µ = ν,

πT := (Id × T )#µ ∈ P(X × Y ) ∈ Π(µ, ν).

Purification
Given a state ρ ∈ S(H), a purification γ ∈ S(H⊗K) pure such that

TrKγ = ρ.

Canonical choice: K = H∗ and H⊗H∗ ≈ T2(H) by∑
i ,j

xij |i〉 ⊗ 〈j | ∈ H ⊗H∗ ←→
∑
i ,j

xij |i〉〈j | ∈ T2(H).

ρ ∈ S(H) 7→ ||√ρ〉〉 ∈ H ⊗H∗
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Quantum optimal transport Transport by quantum channels

Use spectral theorem to diagonalize

ρ =
∑

i

pi |i〉〈i |

with ortonormal basis (|i〉)i .
Then

√
ρ =

∑
i
√
pi |i〉〈i |, hence

||√ρ〉〉 =
∑

i

√
pi |i〉 ⊗ 〈i |.

Taking the partial traces we get

TrH∗ (||√ρ〉〉 〈〈√ρ||) =
∑

i

pi |i〉〈i | = ρ

TrH (||√ρ〉〉 〈〈√ρ||) =
∑

i

pi 〈i | ⊗ |i〉 = ρT .
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Quantum optimal transport Transport by quantum channels

The approach of De Palma and Trevisan7

For any ρ, σ ∈ S(H), the setM(ρ, σ) of quantum transport maps
from ρ to σ is the set of the quantum channels (CPTP maps) such
that

Φ : T1(supp (ρ))→ T1(H), Φ(ρ) = σ.

We can associate with any Φ ∈M(ρ, σ) the quantum state
ΠΦ ∈ S(H⊗H∗) by

ΠΦ =
(
Φ⊗ IT1(H∗)

)
(||√ρ〉〉 〈〈√ρ||) .

7G. De Palma and D. Trevisan, Quantum optimal transport with quantum channels,
Ann. Henri Poincaré 22 (2021), 3199–3234.
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Quantum optimal transport Transport by quantum channels

Since
TrHΠΦ = ρT ad TrH∗ΠΦ = σ,

where XT is the transpose map, i.e. XT 〈φ| = 〈φ|X , it induce the
following definition:
The set of quantum couplings assosiated with ρ, σ ∈ S(H) is

C(ρ, σ) = {Π ∈ S(H⊗H∗) : TrHΠ = ρT ,TrH∗Π = σ}.

De Palma and Trevisan showed that for any ρ, σ ∈ S(H), the map
Φ 7→ ΠΦ is a bijection betweenM(ρ, σ) and C(ρ, σ), that is in
striking contrast to the classical case, the quantum couplings are in
one-to-one correspondance with the quantum transport maps.
Why? The primary reason: quantum channels can “split mass” , i.e.
they can send pure states to mixed states.
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Quantum optimal transport Transport by quantum channels

The cost operator for fixed self-adjoint operators {Ai}Ni=1:

C =
N∑

j=1

(
Aj ⊗ IH∗ − IH ⊗ AT

j

)2

The transport cost for a coupling Π is

C (Π) = TrH⊗H∗ΠC

The quantum Wasserstein (pseudo-)distance DC (ρ, σ) is defined
by

D2
C (ρ, σ) = inf

Π∈C(ρ,σ)
C (Π)
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Quantum optimal transport Transport by quantum channels

Some very strange thing
DC (ρ, σ) = DC (σ, ρ)

√

If ρ = σ then the optimal transport map corresponds to the identity
map Φ = I , so DC (ρ, ρ)2 = C

(∣∣∣∣√ρ〉〉 〈〈√ρ∣∣∣∣) and
DC (ρ, ρ)2 = −

N∑
i=1

Tr
(
[Ai ,
√
ρ]2
)

= 2
M∑
i=1

(
Tr (ρA2

i )− Tr (
√
ρAi
√
ρAi )

)
,

which is the famous the Wigner – Yanase information!
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Quantum optimal transport Transport by quantum channels

For any ρ, τ, σ ∈ S(H) the modified triangle inequality holds:

DC (ρ, σ) ≤ DC (ρ, τ) + DC (τ, τ) + DC (τ, σ)

It is not known whether the term D(τ, τ) can in fact be removed.
conjecture (DPT): a modified version of the quantum optimal
transport distance defined by

dC (ρ, ω) :=

√
D2

C (ρ, ω)− 1
2
(
D2

C (ρ, ρ) + D2
C (ω, ω)

)
is a true metric for all quadratic cost operator C up to some
non-degeneracy assumptions on the Aj ’s generating C to ensure the
definiteness of dC , that is, that dC (ρ, ω) = 0 only if ρ = ω
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Quantum optimal transport Our contribution

Our contribution

Triangle inequality for quantum Wasserstein divergences

Theorem (Bunth-Titkos-Virosztek-P. (2023))

The triangle inequality

dC (τ, ρ) + dC (ρ, ω) ≥ dC (τ, ω)

holds for any τ, ω ∈ S(H), any ρ ∈ P1(H), and any quadratic cost C .
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Quantum optimal transport Our contribution

Our contribution8

A bipartite quantum state is separable if it can be given as∑
k

pk |Ψk〉〈Ψk | ⊗ |Φk〉〈Φk |,

with
∑

k pk = 1. If a state cannot be written in this form, then it is called
entangled. We denote the convex set of separable states by Ssep. We
define the modified quantum Wasserstein (pseudo-)distance by

D2
sep (ρ, σ) = inf

Π
C (Π) = inf

Π

N∑
j=1

Tr
(
Aj ⊗ IH∗ − IH ⊗ AT

j

)2
Π,

where Π ∈ C (ρ, σ) ∩ Ssep are the separable couplings of the marginals ρ
and σ.

8Géza Tóth, J.P.Quantum Wasserstein distance based on an optimization over
separable states, Quantum 7 (2023), 1143
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Quantum optimal transport Our contribution

For two qubits, it is computable numerically with semidefinite
programming.
In general,

Dsep(ρ, σ) ≥ D(ρ, σ).

If the relation
Dsep(ρ, σ) > D(ρ, σ)

holds, then all optimal Π for D(ρ, σ) is entangled.
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Quantum optimal transport Our contribution

Let us consider the distance between two single-qubit mixed states

ρ =
1
2
|1〉〈1|+ 1

4
I ,

and
σφ = e−i σy

2 φρ+i σy
2 φ.

Thus, an entangled Π can be cheaper than a separable one.
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Quantum optimal transport Our contribution

The modified sef-distance

For the self-distance in the modified case for N = 1 we get

Dsep(ρ, ρ)2 =
1
4
FQ [ρ,A],

where

FQ [ρ,A] = 2
∑
k,l

(λk − λl )
2

λk + λl
|〈k |A|l〉|2,

the quantum Fisher information of the state ρ =
∑

k λk |k〉〈k | w.r.t
the selfadjoint operator A.
Note that

Iρ(A) ≤ 1
4
FQ [ρ,A] ≤ (∆A)2

ρ,

where Iρ(A) is the Wigner-Yanase information and (∆A)2
ρ is the

variance.
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Quantum optimal transport Our contribution

Summary

For the quantum Wasserstein distance, we restrict the optimization to
separable states.
Then, the self-distance is the quarter of the quantum Fisher
information.
We found a fundamental connection from quantum optimal transport
to quantum entanglement theory and quantum metrology.

Thank you for your kind attention!
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