## On quantum Wasserstein distance

#### József Pitrik Wigner Research Centre for Physics, Budapest

#### Common work with Géza Tóth, Gergely Bunth, Dánel Virosztek and Tamás Titkos







イロト イポト イヨト イヨト

Dedicated to the memory of Dénes Petz (1953 - 2018) on the occasion of his 70th birthday.



Prof. Dénes Petz and Prof. Fumio Hiai at the end of the '90s

イロト イポト イヨト イヨト

#### The classical (Monge-Kantorovich) optimal transport problem

- Monge Formulation
- Kantorovich Formulation

#### Wasserstein spaces

- p-Wasserstein distance
- Wasserstein barycenters

#### 3 Quantum optimal transport

- Basics
- Transport by quantum couplings
- Transport by quantum channels
- Our contribution

マロト イヨト イヨト

## What is Optimal Transport (OT)?

- The optimal transport problem seeks the most efficient way of transporting one distribution of mass into another.
- The problem was originally studied by Gaspard Monge in 1781: "Given a pile of sand and a pit of equal volume, how can one optimally transport the sand into the pit?"

In: Mémoire sur la théorie des déblais et les remblais (Note on the theory of land excavation and infill)



## The classical optimal transport problem - Monge Formulation

- X sand space : complete separable metric space with its Borel σ-algebra
- Y pit space : complete separable metric space with its Borel σ-algebra
- $\mu \in \mathcal{P}(X)$  the sand distribution probability measure over X
- $u \in \mathcal{P}(Y)$  the shape of the pit probability measure over Y
- $c: X \times Y \to [0, \infty]$  Borel measurable cost function: c(x, y)represents the cost of moving a unit of mass from  $x \in X$  to  $y \in Y$
- $T: X \to Y$  transport map

イロト 不得下 イヨト イヨト 二日

The map  $T: X \rightarrow Y$  must be mass-preserving:

$$\mu(T^{-1}(B)) = \nu(B)$$
, for all  $B \subset Y$  Borel



 $\nu \in \mathcal{P}(Y)$  is **push-forward measure** of  $\mu \in \mathcal{P}(X)$  under the map T if

$$(T_{\#}\mu)(B) := \mu(T^{-1}(B)) = \nu(B),$$

for all  $B \subset Y$  Borel measurable set. In other words if X is a random variable such that  $Law(X) = \mu$ , then

$$Law(T(X)) = T_{\#}\mu.$$

< ロト < 同ト < ヨト < ヨト

The total transport cost of the map  $T: X \to Y$ :

$$C(T) := \int_X c(x, T(x)) \mathrm{d}\mu(x)$$

The Monge problem

For given  $\mu \in \mathcal{P}(X)$ ,  $\nu \in \mathcal{P}(Y)$  and  $c : X \times Y \to [0, \infty]$  to find the optimal transport map  $T : X \to Y$ , i.e. to solve

$$\inf\{C(T) = \int_X c(x, T(x)) d\mu(x) : T_{\#}\mu = \nu\}$$

イロト 不得下 イヨト イヨト

What can we say about the solution of the Monge problem?

A transport map may not exist! For example if  $\mu = \delta_{x_0}$  is the Dirac measure at some  $x_0 \in X$  but  $\nu$  is not, then the set  $B = \{T(x_0)\}$  satisfies

$$\mu(T^{-1}(B)) = 1 > \nu(B),$$

so no such *T* can exist! Why?

Because the mass at  $x_0$  must be sent to a unique point  $T(x_0)$ , i.e. splitting the grains of sand is not allowed!



イロト イポト イヨト イヨト

#### <u>Remarks:</u>

- The existence and the uniqueness of the solution depend heavily on the structure of the space, and on the cost function.
- Monge originally considered the case  $X = Y = \mathbb{R}^3$ , and the cost was the Euclidean distance c(x, y) = ||x y||. This original problem was extremely difficult, and the Academy of Paris offered a prize for its solution.
- The existence thory for the Monge problem was not fully understood until 1995. (Brenier '87, Gangbo & McCann '95.)

イロト イポト イヨト イヨト

In the case

$$X = Y = \mathbb{R}^n$$
,  $c(x, y) = ||x - y||^p$ ,  $0 ,$ 

 $\mu, \nu$  are compactly supported:

- For p > 1, if  $\mu, \nu$  are absolutely continous with respect to Lebesgue measure, then there is a unique solution to the Monge problem.
- For p = 2 and n ≥ 2 the unique optimal transport map is T = ∇φ for some convex function φ : ℝ<sup>n</sup> → ℝ.
- For p = 1, if  $\mu, \nu$  are absolutely continous with respect to Lebesgue measure, then there are solutions of the Monge problem, but there is no uniqueness.
- For p < 1, there is in general no solution of the Monge problem, except if  $\mu$  and  $\nu$  are concentrated on disjoint sets.

イロト 不得下 イヨト イヨト 二日

# The classical optimal transport problem - Kantorovich Formulation

Working on optimal allocation of scarce resources during World War II, Kantorovich revisited the optimal transport problem in 1942.



< ロ > < 同 > < 回 > < 回 >

The classical optimal transport problem - Kantorovich Formulation

- X sand space : complete separable metric space with its Borel σ-algebra
- Y pit space : complete separable metric space with its Borel σ-algebra
- $\mu \in \mathcal{P}(X)$  the sand distribution probability measure over X
- $u \in \mathcal{P}(Y)$  the shape of the pit probability measure over Y
- c: X × Y → [0,∞] Borel measurable cost function: c(x, y) represents the cost of moving a unit of mass from x ∈ X to y ∈ Y

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Instead of transport maps, we consider probability measures on the product space  $X \times Y$ . If  $\pi \in \mathcal{P}(X \times Y)$ , then  $\pi(A \times B)$  is the amount of sand transported from the subset  $A \subseteq X$  into the part of the pit represented by  $B \subseteq Y$ .

- The total mass sent from A is  $\pi(A \times Y)$ , and the total mass sent to B is  $\pi(X \times B)$ .
- $\pi$  is mass-preserving iff

$$\pi(A \times Y) = \mu(A)$$
 for all  $A \subset X$  Borel

 $\pi(X \times B) = \nu(B)$  for all  $B \subset Y$  Borel

A probability measure  $\pi$  satisfying these conditions will be called **coupling** or **transport plan** of  $\mu$  and  $\nu.$ 

The set of such couplings is denoted by  $\Pi(\mu, \nu)$ .

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ●

- If  $\pi \in \Pi(\mu, \nu)$ , then  $\pi|_X = \mu$  and  $\pi|_Y = \nu$  are the marginals.
- Π(μ, ν) is never empty: it always contains the product measure μ ⊗ ν defined by [μ ⊗ ν](A × B) = μ(A)ν(B)



#### <sup>1</sup>Source: Wikipedia

József Pitrik

< ロ > < 同 > < 回 > < 回 >

## Transport map vs. coupling

Let 
$$T: X o Y$$
 satisfy  $T_{\#}\mu = \nu$ . Consider the map

$$Id \times T : X \to X \times Y, \quad x \mapsto (x, T(x)),$$

and define

$$\pi_{\mathcal{T}} := (Id \times \mathcal{T})_{\#} \mu \in \mathcal{P}(X \times Y).$$

Then  $\pi_T \in \Pi(\mu, \nu)$ , i.e.

$$\pi_T|_1 = \mu$$
 and  $\pi_T|_2 = \nu$ .

æ

イロト イヨト イヨト イヨト

The total cost associated with  $\pi \in \Pi(\mu, \nu)$  is

$$C(\pi) = \int_{X \times Y} c(x, y) \mathrm{d}\pi(x, y).$$

The Kantorovich problem

For given  $\mu \in \mathcal{P}(X)$ ,  $\nu \in \mathcal{P}(Y)$  and  $c : X \times Y \to [0, \infty]$  to find the optimal transport plan  $\pi \in \Pi(\mu, \nu)$ , i.e. to solve

$$\inf\{C(\pi) = \int_{X \times Y} c(x, y) d\pi(x, y) : \pi \in \Pi(\mu, \nu)\}$$

Probabilistic view:

$$\inf_{(X,Y)} \{ \mathbb{E}[c(X,Y)] : X \sim \mu \text{ and } Y \sim \nu \}$$

Both the objective function  $C(\pi)$  and the constraints for the coupling are linear in  $\pi$ , so the problem can be seen as infinite-dimensional linear programming.

In 1975, Kantorovich shared the Nobel Memorial Prize in Economic Sciences with Tjalling Koopmans "for their contributions to the theory of optimum allocation of resources."



< ロト < 同ト < ヨト < ヨト

In the case of discrete probability densities, with the transport plan

 $\pi(x_i, y_j) \geq 0$ 

such that

$$\sum_j \pi(x_i, y_j) = p_i, \quad \sum_i \pi(x_i, y_j) = q_j,$$

the problem becomes linear optimization with linear constaints:

$$\min_{\pi}\sum_{i}\sum_{j}c(x_{i},y_{j})\pi(x_{i},y_{j})$$

that can be solved via simplex algorithm.

イロト イヨト イヨト ・

## Kantorovich vs. Monge

- The Kantorovich problem admits a solution when the cost is continous.
- The Kantorovich problem is a relaxation of the Monge problem, because to each transport map *T* one can associate a coupling π<sub>T</sub>, by

$$\pi_T(A imes B) := \mu(A \cap T^{-1}(B)), \quad \text{for all Borel } A \subseteq X, \ B \subseteq Y$$

with the same cost, i.e.  $C(T) = C(\pi_T)$ .

It follows that

$$\inf_{T:T_{\#}\mu=\nu}C(T)=\inf_{\pi_{T}:T_{\#}\mu=\nu}C(\pi)\geq \inf_{\pi\in\Pi(\mu,\nu)}C(\pi)=C(\pi^{*}),$$

for some optimal  $\pi^*$ .

## What is a Wasserstein space?

 Let W<sub>p</sub>(X) be the set of Borel probability measures with finite p'th moment defined on a given complete separable metric space (X, d):

$$\mathcal{W}_p(X) = \left\{ \mu \in \mathcal{P}(X) \, \Big| \, \int_X d(x, \hat{x})^p \, \mathrm{d}\mu(x) < \infty ext{ for some } \hat{x} \in X 
ight\}.$$

 The p-Wasserstein metric W<sub>p</sub>, for p ≥ 1 on W<sub>p</sub>(X) is then defined as the optimal transport problem with the cost function c(x, y) = d<sup>p</sup>(x, y). For µ, ν ∈ W<sub>p</sub>(X)

$$W_p(\mu,\nu) := \left(\inf_{\pi\in\Pi(\mu,\nu)}\int_{X^2} d(x,y)^p \,\mathrm{d}\pi(x,y)\right)^{\frac{1}{p}}$$

where  $\Pi(\mu, \nu) = \{\pi \in \mathcal{P}(X^2) \mid \pi|_1 = \mu, \pi|_2 = \nu\}$  is the collection of all *transport plans* between  $\mu$  and  $\nu$ .

イロト イヨト イヨト ・

The space of sufficiently concentrated probability measures  $W_p(X)$  endowed with the metric  $W_p$  is a separable and complete metric space, called **p–Wasserstein space**.

Example: quadratic Wasserstein distance of two Gaussians  $P = \mathcal{N}(m, C)$  is a normal distribution on  $\mathbb{R}^n$  if its probability density function is

$$p(x) = \frac{\exp\left(-\frac{1}{2}(x-m)^T C^{-1}(x-m)\right)}{\sqrt{(2\pi)^n \det C}},$$

where  $m \in \mathbb{R}^n$  is its expected value and *C* is a symmetric postive-definite  $n \times n$  matrix, the covariance matrix.

If  $P_1 = \mathcal{N}(m_1, C_1)$  and  $P_2 = \mathcal{N}(m_2, C_2)$ , then their 2-Wasserstein distance, wrt. the usual Euclidean norm on  $\mathbb{R}^n$  is

$$W_2(P_1, P_2)^2 = \|m_1 - m_2\|_2^2 + \operatorname{Tr} (C_1 + C_2 - 2(C_2^{1/2}C_1C_2^{1/2})^{1/2}).$$

Fun fact: if  $\rho_1$  and  $\rho_2$  are density matrices, then their Bures distance  $D_B$  is given by

$$D_B^2(\rho_1,\rho_2) = \operatorname{Tr}\left(\rho_1 + \rho_2 - 2(\rho_2^{1/2}\rho_1\rho_2^{1/2})^{1/2}\right),\,$$

and their *fidelity* is

$$F(\rho_1, \rho_2) = \operatorname{Tr}(\rho_2^{1/2}\rho_1\rho_2^{1/2})^{1/2}.$$

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト …

In general if  $(X, \Sigma)$  is a measurable space and  $\mathcal{P}(X)$  is the space of probability measures on X, there is a lot of possibility to define distances and divergences between two diributions  $P, Q \in \mathcal{P}(X)$  to measure their dissimilarity:

• The Total Variation (TV) distance

$$TV(P,Q) = \sup_{A\in\Sigma} |P(A) - Q(A)|.$$

• The Kullback-Leibler divergence (KL)

$$\mathcal{KL}(P||Q) = egin{cases} \int_X \log\left(rac{p(x)}{q(x)}
ight) p(x) \mathrm{d}\mu(x), & ext{if supp}\left(P
ight) \cap \ker Q = \{0\} \ +\infty, & ext{if supp}\left(P
ight) \cap \ker Q 
eq \{0\}, \end{cases}$$

where  $P(A) = \int_A p(x) d\mu(x)$  and  $Q(A) = \int_A q(x) d\mu(x)$  for all  $A \in \Sigma$ .

イロト 不得下 イヨト イヨト 二日

#### • The Jensen-Shannon divergence (JS)

$$JS(P,Q) = KL(P||M) + KL(Q||M),$$

where  $M = \frac{P+Q}{2}$  is the mixture.

These distances are useful, but they have some drawbacks:

- We cannot use them to compare *P* and *Q* when one is discrete and the other is continous.
- **②** These distances ignore the underlying geometry of the space.

イロト イポト イヨト イヨト

Example



• 
$$TV(P,Q) = \begin{cases} 1-p & \text{if } \Theta \neq 0\\ 0 & \text{if } \Theta = 0 \end{cases}$$
  
•  $KL(P||Q) = \begin{cases} +\infty & \text{if } \Theta \neq 0\\ 0 & \text{if } \Theta = 0 \end{cases}$ 

3

イロト イヨト イヨト イヨト



• 
$$JS(P, Q) = (1 - p) \log 2$$

• The 1-Wasserstein (Earth-Mover) distance depends on  $\Theta$  !

$$W_1(P,Q) = \Theta(1-p)$$

• Thus, the Wasserstein metric on probability spaces is sensitive to the "underlying" metric!

< ロト < 同ト < ヨト < ヨト

## Wasserstein barycenters

When we average different objects – such as distributions, data sets or images – we would like to make sure that we get back a similar objects. Suppose we have a set of distributions  $P_1, P_2, \ldots, P_n$ . How do we summarize these distributions with one "typical" distribution? We could take the average or Euclidean barycenter:

$$\frac{1}{n}\sum_{i=1}^{n}P_{i}$$

A generalization of the average is the following. Let (X, d) be a metric space. The **barycenter** of the points  $x_1, x_2, \ldots, x_n \in X$  is defined by

$$BC_d(x_1, x_2, ..., x_n) = \arg\min_x \frac{1}{n} \sum_{i=1}^n d^2(x, x_i).$$

イロト イ団ト イヨト イヨト

#### Example $1^2$



Top: Five distibutions. Bottom left: Euclidean average of the distributions. Bottom right: 1-Wasserstein barycenter.

<sup>2</sup>Kolouri et al. Optimal Mass Transport: Signal processing and machine-learning applications. IEEE Signal Processing Magazine 34(4) (2017):43–59.

#### Example $2^3$



Top: We take some random cirles and take a uniform distibution on each circle. Bottom left: Euclidean average of the distributions. Bottom right: 1-Wasserstein barycenter.

<sup>3</sup>Kolouri et al. Optimal Mass Transport: Signal processing and machine-learning applications. IEEE Signal Processing Magazine 34(4) (2017):43–59.

## Basics of quantum optimal transport

#### • several different approaches:

- Biane and Voiculescu (free probability)
- Carlen and Maas (dynamical interpretation)
- Golse, Mouhot, and Paul (static interpretation)
- De Palma and Trevisan (quantum channels)
- Życzkowski and Słomczyński (semi-classical approach)
- $\bullet\,$  most relevant approaches for us are that of Golse-Mouhot-Paul^4 and De Palma-Trevisan^5

<sup>&</sup>lt;sup>4</sup>F. Golse, C. Mouhot and T. Paul, *On the mean-field and classical limits of quantum mechanics*, Commun. Math. Phys., **343** (2016), 165–205.

<sup>&</sup>lt;sup>5</sup>G. De Palma and D. Trevisan, *Quantum optimal transport with quantum channels*, Ann. Henri Poincaré **22** (2021), 3199–3234.

## Classical vs Quantum: a dictionary

- X, Y spaces (sand and pit)  $\leftrightarrow \mathcal{H}, \mathcal{K}$  Hilbert spaces
- $\mathcal{P}(X)$  prob. measures on  $X \leftrightarrow \mathcal{S}(\mathcal{H})$  quantum state space

- $x \in X \iff |\psi\rangle \in \mathcal{H}$  ket vectors
- $X \times Y$  product spaces  $\leftrightarrow \mathcal{H} \otimes \mathcal{K}$  tensor product
  - (psd operators, with trace 1)
  - $\mu, \nu \in \mathcal{P}(X) \iff \rho, \sigma \in \mathcal{S}(\mathcal{H})$  quantum states

 $\delta_{\star}$  Dirac measures  $\leftrightarrow |\psi\rangle\langle\psi| \in \mathcal{S}(\mathcal{H})$  pure states

(1-rank projections)

$$\begin{aligned} \pi \in \mathcal{P}(X \times Y) \text{ joint distributions } &\leftrightarrow & \Pi \in \mathcal{S}(\mathcal{H} \otimes \mathcal{K}) \text{ bipartite states} \\ p_i &= \sum_j \pi(x_i, y_j), q_j = \sum_i \pi(x_i, y_j) &\leftrightarrow & \rho = \operatorname{Tr}_{\mathcal{K}} \Pi, \sigma = \operatorname{Tr}_{\mathcal{H}} \Pi \\ & \text{marginal distributions } & \text{marginal states} \\ T : X \to Y \text{ transport map } &\leftrightarrow & \Phi : \mathcal{S}(\mathcal{H}) \to \mathcal{S}(\mathcal{K}) \text{ CPTP maps} \\ & ( \text{ quantum channels } ) \end{aligned}$$

## Basics of non-commutative optimal transport

- when measuring an observable quantity A on a quantum system being in the state  $\rho \in$ , the probability of the outcome lying in an interval  $[a, b] \subset \mathbb{R}$  is tr<sub>H</sub> ( $\rho E_A([a, b])$ ), where  $E_A$  is the spectral measure of A
- a quantum state *encapsulates several classical probability distributions*, each corresponding to a physical quantity we are interested in
- let  $A^{(1)}, \ldots, A^{(k)}$  be observable quantities, let us fix the initial state  $\rho_1$  and the final state  $\rho_2$
- let  $X_i^{(j)}$  denote the random variable obtained by measuring  $A^{(j)}$  in  $\rho_i$ , that is,  $\mathbb{P}\left(X_i^{(j)} \in [a, b]\right) = \operatorname{tr}_{\mathcal{H}}\left(\rho_i E^{(j)}\left([a, b]\right)\right)$
- so the squared OT distance of the quantum states  $\rho_1,\rho_2\in\mathsf{should}$  read as

$$D^{2}(\rho_{1},\rho_{2}) = \inf_{\left(X_{i}^{(1)},...,X_{i}^{(k)}\right) \text{ is given by } \rho_{i} (i \in \{1,2\})} \left\{ \sum_{j=1}^{k} \mathsf{E}\left(X_{1}^{(j)} - X_{2}^{(j)}\right)^{2} \right\}.$$

QOT via quantum couplings

The approach of Golse, Mouhot and Paul<sup>6</sup>

• quantum couplings are defined as

$$\mathcal{C}\left(
ho,\omega
ight)=\left\{\pi\in\mathcal{S}\left(\mathcal{H}\otimes\mathcal{H}
ight)\,|\,\mathrm{tr}_{2}\pi=
ho,\,\mathrm{tr}_{1}\pi=\omega
ight\},$$

cost operators

$$C = \sum_{j=1}^{M} (A_j \otimes I - I \otimes A_j)^2$$

where  $A_{j} \in \mathcal{L}^{sa}(\mathcal{H})$ .

• optimal transport cost:

$$D_{C}^{2}(\rho,\omega) = \inf_{\pi \in \mathcal{C}(\rho,\omega)} \operatorname{tr} \pi C$$

<sup>6</sup>F. Golse, C. Mouhot and T. Paul, *On the mean-field and classical limits of quantum mechanics*, Commun. Math. Phys., **343** (2016), 165–205.

József Pitrik

## QOT via quantum channels

Recall: in the classical case, for  $T: X \rightarrow Y$  satisfying  $T_{\#}\mu = \nu$ ,

$$\pi_{\mathcal{T}} := (Id \times T)_{\#} \mu \in \mathcal{P}(X \times Y) \in \Pi(\mu, \nu).$$

Purification

Given a state  $\rho \in S(\mathcal{H})$ , a purification  $\gamma \in S(\mathcal{H} \otimes \mathcal{K})$  pure such that

 $\operatorname{Tr}_{\mathcal{K}}\gamma = \rho.$ 

**Canonical** choice:  $\mathcal{K} = \mathcal{H}^*$  and  $\mathcal{H} \otimes \mathcal{H}^* \approx \mathcal{T}_2(\mathcal{H})$  by

$$\sum_{i,j} x_{ij} |i\rangle \otimes \langle j| \in \mathcal{H} \otimes \mathcal{H}^* \quad \longleftrightarrow \quad \sum_{i,j} x_{ij} |i\rangle \langle j| \in \mathcal{T}_2(\mathcal{H}).$$

 $ho \in \mathcal{S}(\mathcal{H}) \mapsto \ket{\ket{\sqrt{
ho}}} \in \mathcal{H} \otimes \mathcal{H}^*$ 

• Use spectral theorem to diagonalize

$$\rho = \sum_{i} p_{i} |i\rangle \langle i|$$

with ortonormal basis  $(|i\rangle)_i$ .

• Then  $\sqrt{\rho} = \sum_i \sqrt{p_i} |i\rangle \langle i|$ , hence

$$||\sqrt{\rho}\rangle\rangle = \sum_{i} \sqrt{p_{i}} |i\rangle \otimes \langle i|.$$

• Taking the partial traces we get

$$Tr_{\mathcal{H}^*}(||\sqrt{\rho}\rangle\rangle\langle\langle\sqrt{\rho}||) = \sum_i p_i |i\rangle\langle i| = \rho$$
$$Tr_{\mathcal{H}}(||\sqrt{\rho}\rangle\rangle\langle\langle\sqrt{\rho}||) = \sum_i p_i \langle i|\otimes|i\rangle = \rho^T.$$

イロト 不得下 イヨト イヨト 二日

The approach of De Palma and Trevisan<sup>7</sup>

• For any  $\rho, \sigma \in S(\mathcal{H})$ , the set  $\mathcal{M}(\rho, \sigma)$  of quantum transport maps from  $\rho$  to  $\sigma$  is the set of the quantum channels (CPTP maps) such that

$$\Phi: \mathcal{T}_1(\mathrm{supp}\,(
ho)) \to \mathcal{T}_1(\mathcal{H}), \quad \Phi(
ho) = \sigma.$$

• We can associate with any  $\Phi \in \mathcal{M}(\rho, \sigma)$  the quantum state  $\Pi_{\Phi} \in \mathcal{S}(\mathcal{H} \otimes \mathcal{H}^*)$  by

$$\Pi_{\Phi} = \left( \Phi \otimes I_{\mathcal{T}_{1}(\mathcal{H}^{*})} \right) \left( \left| \left| \sqrt{\rho} \right\rangle \right\rangle \left\langle \left\langle \sqrt{\rho} \right| \right| \right).$$

Since

$$\operatorname{Tr}_{\mathcal{H}} \Pi_{\Phi} = \rho^{\mathcal{T}} \quad \text{ad} \quad \operatorname{Tr}_{\mathcal{H}^*} \Pi_{\Phi} = \sigma,$$

where  $X^T$  is the transpose map, i.e.  $X^T \langle \phi | = \langle \phi | X$ , it induce the following definition:

• The set of quantum couplings assosiated with  $ho,\sigma\in\mathcal{S}(\mathcal{H})$  is

$$\mathcal{C}(\rho,\sigma) = \{ \Pi \in \mathcal{S}(\mathcal{H} \otimes \mathcal{H}^*) : \operatorname{Tr}_{\mathcal{H}} \Pi = \rho^{\mathcal{T}}, \operatorname{Tr}_{\mathcal{H}^*} \Pi = \sigma \}.$$

- De Palma and Trevisan showed that for any  $\rho, \sigma \in S(\mathcal{H})$ , the map  $\Phi \mapsto \Pi_{\Phi}$  is a bijection between  $\mathcal{M}(\rho, \sigma)$  and  $\mathcal{C}(\rho, \sigma)$ , that is in striking contrast to the classical case, the quantum couplings are in one-to-one correspondance with the quantum transport maps.
- Why? The primary reason: quantum channels **can "split mass"**, i.e. they can send pure states to mixed states.

イロト 不得下 イヨト イヨト 二日

• The cost operator for fixed self-adjoint operators  $\{A_i\}_{i=1}^N$ :

$$C = \sum_{j=1}^{N} \left( A_j \otimes I_{\mathcal{H}^*} - I_{\mathcal{H}} \otimes A_j^T \right)^2$$

• The transport cost for a coupling  $\Pi$  is

$$C(\Pi) = \operatorname{Tr}_{\mathcal{H}\otimes\mathcal{H}^*}\Pi C$$

• The quantum Wasserstein (pseudo-)distance  $D_C(\rho, \sigma)$  is defined by

$$D^2_{\mathcal{C}}(
ho,\sigma) = \inf_{\Pi \in \mathcal{C}(
ho,\sigma)} \mathcal{C}(\Pi)$$

イロト イヨト イヨト ・

Some very strange thing

• 
$$D_C(\rho,\sigma) = D_C(\sigma,\rho) \checkmark$$

l

• If  $\rho = \sigma$  then the optimal transport map corresponds to the identity map  $\Phi = I$ , so  $D_C(\rho, \rho)^2 = C\left(\left|\left|\sqrt{\rho}\right\rangle\right\rangle \left\langle\left\langle\sqrt{\rho}\right|\right|\right)$  and

$$\begin{split} \mathcal{D}_{\mathcal{C}}(\rho,\rho)^2 &= -\sum_{i=1}^{N} \operatorname{Tr} \left( [\mathcal{A}_i,\sqrt{\rho}]^2 \right) \\ &= 2\sum_{i=1}^{M} \left( \operatorname{Tr} \left( \rho \mathcal{A}_i^2 \right) - \operatorname{Tr} \left( \sqrt{\rho} \mathcal{A}_i \sqrt{\rho} \mathcal{A}_i \right) \right), \end{split}$$

which is the famous the Wigner - Yanase information!

イロト イボト イヨト イヨト

• For any  $\rho, \tau, \sigma \in \mathcal{S}(\mathcal{H})$  the modified triangle inequality holds:

$$D_{\mathcal{C}}(\rho,\sigma) \leq D_{\mathcal{C}}(\rho,\tau) + D_{\mathcal{C}}(\tau,\tau) + D_{\mathcal{C}}(\tau,\sigma)$$

It is not known whether the term  $D(\tau, \tau)$  can in fact be removed. • conjecture (DPT): a modified version of the quantum optimal transport distance defined by

$$d_{\mathcal{C}}(\rho,\omega) := \sqrt{D_{\mathcal{C}}^2(\rho,\omega) - \frac{1}{2} \left( D_{\mathcal{C}}^2(\rho,\rho) + D_{\mathcal{C}}^2(\omega,\omega) \right)}$$

is a true metric for all quadratic cost operator C up to some non-degeneracy assumptions on the  $A_j$ 's generating C to ensure the definiteness of  $d_C$ , that is, that  $d_C(\rho, \omega) = 0$  only if  $\rho = \omega$ 

イロト イポト イヨト イヨト

## Our contribution

Triangle inequality for quantum Wasserstein divergences Theorem (Bunth-Titkos-Virosztek-P. (2023))

The triangle inequality

$$d_{\mathcal{C}}(\tau,\rho) + d_{\mathcal{C}}(\rho,\omega) \ge d_{\mathcal{C}}(\tau,\omega)$$

holds for any  $\tau, \omega \in S(\mathcal{H})$ , any  $\rho \in \mathcal{P}_1(\mathcal{H})$ , and any quadratic cost C.

< ロト < 同ト < ヨト < ヨト

## Our contribution<sup>8</sup>

A bipartite quantum state is **separable** if it can be given as

$$\sum_{k} p_{k} |\Psi_{k}\rangle \langle \Psi_{k}| \otimes |\Phi_{k}\rangle \langle \Phi_{k}|,$$

with  $\sum_{k} p_{k} = 1$ . If a state cannot be written in this form, then it is called **entangled**. We denote the convex set of separable states by  $S_{sep}$ . We define the modified **quantum Wasserstein (pseudo-)distance** by

$$D_{sep}^{2}(\rho,\sigma) = \inf_{\Pi} C(\Pi) = \inf_{\Pi} \sum_{j=1}^{N} \operatorname{Tr} \left( A_{j} \otimes I_{\mathcal{H}^{*}} - I_{\mathcal{H}} \otimes A_{j}^{T} \right)^{2} \Pi,$$

where  $\Pi \in \mathcal{C}(\rho, \sigma) \cap \mathcal{S}_{sep}$  are the separable couplings of the marginals  $\rho$  and  $\sigma$ .

<sup>8</sup>Géza Tóth, J.P.*Quantum Wasserstein distance based on an optimization over separable states*, Quantum 7 (2023), 1143

- For two qubits, it is computable numerically with semidefinite programming.
- In general,

$$D_{sep}(\rho,\sigma) \geq D(\rho,\sigma).$$

If the relation

$$D_{sep}(
ho,\sigma) > D(
ho,\sigma)$$

holds, then all optimal  $\Pi$  for  $D(\rho, \sigma)$  is entangled.

3

イロト イポト イヨト イヨト

Let us consider the distance between two single-qubit mixed states

$$\rho = \frac{1}{2} |1\rangle \langle 1| + \frac{1}{4}I,$$

and



Thus, an entangled  $\Pi$  can be cheaper than a separable one.

József Pitrik

## The modified sef-distance

• For the self-distance in the modified case for N = 1 we get

$$D_{sep}(\rho,\rho)^2 = rac{1}{4}F_Q[
ho,A],$$

where

$$F_Q[\rho, A] = 2\sum_{k,l} \frac{(\lambda_k - \lambda_l)^2}{\lambda_k + \lambda_l} |\langle k|A|l\rangle|^2,$$

the quantum Fisher information of the state  $\rho = \sum_k \lambda_k |k\rangle \langle k|$  w.r.t the selfadjoint operator A.

Note that

$$I_{
ho}(\mathcal{A}) \leq rac{1}{4}F_Q[
ho,\mathcal{A}] \leq (\Delta\mathcal{A})_{
ho}^2,$$

where  $I_{\rho}(A)$  is the Wigner-Yanase information and  $(\Delta A)_{\rho}^2$  is the variance.

József Pitrik



- For the quantum Wasserstein distance, we restrict the optimization to separable states.
- Then, the self-distance is the quarter of the quantum Fisher information.
- We found a fundamental connection from quantum optimal transport to quantum entanglement theory and quantum metrology.

### Thank you for your kind attention!

イロト イヨト イヨト