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Quantum Simulation
Fundamental Questions

Symmetry guidelines for answering:

1 when is a quantum hardware universal?
interplay of controls and coupling architecture

2 when can quantum system A simulate system B ?
in particular: least state-space overhead

3 what are the reachable sets under collective
controls?

More generally:
what are the reachable sets in open systems?
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Getting All Symmetries
Centraliser quant-ph/0904.4654 & 1012.5256

¥ Consider closed control system with k = 〈iHν〉Lie

Definition

The symmetry of the Hamiltonians {iHν} is expressed by
the centraliser (or commutant) of k in su(N)

k′ := {s ∈ su(N)|[s,Hν ] = 0 ∀ν = d ; 1,2, . . . ,m} .

It collects all constants of motion under K = 〈exp k〉.
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up to N = 215 Proc. 19th MTNS Budapest 2010, 2341
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Algorithm
Solve Linear Equations arXiv: 1012.5256

Algorithm : Check for conjugation to so(N) or sp( N
2 )

for n-qubit drift and control Hamiltonians {iHd ; H1, . . . , Hm}

1. For each Hamiltonian Hν ∈ {Hd ; H1, . . . , Hm}
determine all non-singular solutions to the homogeneous linear eqn.

Sν := {S ∈ SL(N)|SHν + H t
νS = 0} b= ker (Hν ⊗ 1l + 1l⊗ Hν)

2. Check intersection of all sets of solutions
S =

T
ν Sν .

if SS̄ = +1l: k ⊆ so(N)

if SS̄ = −1l: k ⊆ sp( N
2 )

if S = {} : k of other type

Complexity O(N6), as in Liouville space N2 equations
have to be solved by LU decomposition.
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¥ k must include max. orthogonal and symplectic types
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Controllability
Single Symmetry Condition arXiv: 1012.5256

Theorem

Let {Hν | ν = d ; 1,2, . . . ,m} be drift and control
Hamiltonians of control system Σ with system algebra k.

Define ΦAB := {(iHν ⊗ 1lA + 1lB ⊗ iHν) | ν = d ,1, . . . ,m}.

Then Σ is fully controllable, i.e. k = su(2n), iff
joint commutant to ΦAB is two-dimensional
i.e. Φ′AB = {λ1l, SWAPAB}.
[ΦAB] = [symmetric]bosonic ⊕ [anti-symmetric]fermionic
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Quantum Simulability
Algebraic Decision arXiv: 1012.5256

Theorem

Let ΣA,ΣB be control systems with irreducible system
algebras kA, kB over a given Hilbert space H. Then

1 ΣA simulates ΣB ⇔ kB is a subalgebra of kA ,
2 ΣA simulates ΣB irreducibly with least overhead in H
⇔ kB is an irreducible subalgebra of kA and for any
irreducible kI with kA ⊇kI⊇kB one has kI=kA or kI=kB
or both.
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Quantum Simulation
Overview: Local Controls arXiv: 1012.5256

system type fermionic bosonic system alg.

n-spins- 1
2 no. of levels ———– order of coupling ———–

A

XX XX n quadratic (i.e. 2) – so(2n + 1)

n + 1 quadratic (i.e. 2) – so(2n + 2)

for n mod 4 ∈ {0, 1} n up to n – so(2n)

for n mod 4 ∈ {2, 3} n – up to n sp(2n−1)

n up to n up to n su(2n)

NB: no. of spins maps into no. of levels (as in Jordan-Wigner transformation).
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2 bilinear control system: Ẋ (t) = (A +

∑
j ujBj)X (t)
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Modules for Unconstrained Bilinear Control

0. initialise amplitudes u(0)
j (tk ) ∈ U ⊆ R for all times tk

with k ∈ T (0)
k := {1,2, . . . ,M}, def. X0, X †

tar.

1. exponentiate Xk = e∆tAu(tk ) for all k ∈ T (r)
k with

Au(tk ) := A +
∑

j uj(tk )Bj

2. multiplication I Xk :0 := Xk · Xk−1 · · ·X1(·X0 = 1l)

3. multiplication II Λ†M+1:k+1 := X †
tar · XM · XM−1 · · ·Xk+1

4. evaluate fidelity f= 1
N | tr

{
Λ†M+1:k+1Xk :0

}
|

5. approximate gradients ∂f (X(tk ))
∂uj

for all k ∈ T (r)
k

6. update amplitudes for all k ∈ T (r)
k

e.g. u(r+1)
j (tk ) = u(r)

j (tk ) + F (αk ,Hess−1
k , ∂f (X(tk ))

∂uj
)

7. loops
inner: while || ∂fk

∂uj
|| > glimit for k ∈ T (r)

k goto step 1 (s 7→ s + 1)

outer: else goto step 1 with new set T (r+1)
k (r 7→ r + 1)
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¥ set-up

⇒ timeopt. CNOT: some 5 times faster than NEC group

• Quality q := Fe−τop/τQ

error 1− q = 1− 0.999999999 e−55ps/10ns = 0.0055
(NEC: 1− q = 1− 0.4188 e−250ps/10ns = 0.5917)

PRA 75, 012302 (2007)
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Time-Optimal Quantum Control
Realising Quantum Gates for Charge Qubits with F. Wilhelm, M. Storcz

Goal: realise timeoptimal CNOT on 2 coupled charge qubits

pseudospin Hamiltonian: H = Hdrift + Hcontrol

Hdrift =−
„

Em

4
+

Ec1

2

«
(σ

(1)
z ⊗ 1l)−

EJ1

2
(σ

(1)
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Ec2
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«
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(2)
z )−

EJ2
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(σ
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Hcontrol =

„
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2
ng2 + Ec1ng1

«
(σ

(1)
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+

„
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2
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«
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z )

NB: components {Hd + Hd , Hc} form minimal generating set of su(4).
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Realising Quantum Gates for Charge Qubits

Symmetry: real symmetric Hamiltonians
⇒ palindromic controls for self-inverse gates (CNOT)
⇒ composed of cos Fourier series
⇒ Cauer synthesis by LC elements (no resistive R)
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Examples of Quantum Control
Realising Quantum Gates for Charge Qubits

Goal: TOFFOLI gate on 3 linearly coupled charge qubits

13 times faster than NEC
¥ error rates cut by two orders of magnitude (T2 ' 10 ns):

1 direct gate by optimal control
1− q = 1− 0.99999 e−180ps/10ns = 0.0178

2 by 9 CNOT’s from optimal control
1− q = 1− (0.999999999 e−55ps/10ns)9 = 0.0483

3 by 9 CNOT’s under pioneering controls
1− q = 1− (0.4188 e−250ps/10ns)9 = 0.9997

PRA 75, 012302 (2007)
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Principles: Optimal Quantum Control

Scope in Optimal Control:
maximise quality function subject to equation of motion

Scenarios:
Hamiltonian dynamics

notation: U := e−itH ; AdU(·) := U(·)U−1; adH(·) := [H, · ]

1. pure state ˙|ψ〉 = −iH |ψ〉 ∈ H
2. gate U̇ = −iH U ∈ U(H)

3. non-pure state ρ̇ = −i adH (ρ) ∈ B1(H)

4. projective gate ȦdU = −i adH ◦ AdU ∈ U
(
B1(H)

)
Master equations of dissipative dynamics

3’. non-pure state ρ̇ = −(i adH + Γ) (ρ)

4’. contractive map Ḟ = −(i adH + Γ) ◦ F ∈ GL
(
B1(H)

)
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Examples of Quantum Control
3. Decoherence Control: Results of System II

¥ System-II: driving outside slowly-relaxing subspace

no relaxation with relaxation (T2, T1)
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3. Decoherence Control: Results of System II
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JPB 44 154013 (2011), quant-ph/0609037
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Examples of Quantum Control
3. Realising Quantum Gates with Minimal Relaxation

CNOT under System-II: Projection into Subspaces

¥ time-optimised
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3. Realising Quantum Gates with Minimal Relaxation
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Examples of Quantum Control
3. Realising Quantum Gates with Minimal Relaxation

JPB 44 154013 (2011), quant-ph/0609037

¥ CNOT under System-II: Process Tomography of
Gate Protected against Dissipation by Optimal Control
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3. Realising Quantum Gates with Minimal Relaxation
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¥ CNOT under System-II: comparison of methods

by decoherence control: conventional:
> 95% fideltity < 15% fidelity
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Paper and Pen Approach: TROTTER Expansion

Decoherence-Protected CNOT-Gate via

¥ logical qubits
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Paper and Pen Approach: TROTTER Expansion
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¥ realisation by System-II
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Control of Non-Markovian Open Systems
Qubit Coupled via Two-Level Fluctuator to Spin Bath

with P. Rebentrost and F. Wilhelm

Model:
qubit coupled to a two-level fluctuator coupled to a bath

H = HS + HI + HB

HS = E1(t)σz + ∆σx + E2τz + Λσzτz

HI =
∑

i λi(τ
+bi + τ−b†i )

HB =
∑

i ~ωib
†
i bi

Ohmic bath spectrum: J(ω) =
P

i λ2
i δ(ω − ωi ) = κωΘ(ω − ωc)

couplings λi , damping κ, high-freq. cut-off ωc

PRL 102 090401 (2009)
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Control of Non-Markovian Open Systems
Qubit Coupled via Two-Level Fluctuator to Spin Bath

with P. Rebentrost and F. Wilhelm
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Control of Non-Markovian Open Systems

¥ Principle: embed to Markovian and project

ρ0 = ρSE(0)⊗ ρB(0)
AdW (t)−−−−−−−−→ ρ(t) = W (t)ρ0W †(t)

ΠSE

ytrB ΠSE

ytrB

ρSE(0)
FSE (t)−−−−−−−−→

Markovian
ρSE(t)

ΠS

ytrE ΠS

ytrE

ρS(0)
FS(t)−−−−−−−−−→

non−Markovian
ρS(t)
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Lindbladians Generate (Lie) Semigroup
Rep. Math. Phys. 64 93 (2009)

Consider: controlled system with time dep Lindbladians {Lu(t)}

Ẋ = −Lu(t)X = −(iHd + i
∑

j uj(t)Hj + Γ)X

Lindbladians {Lu} form

Lie wedge w

Lie semialgebra ws, if {Lu} BCH compatible with w

i.e. Lj ∗ Lk := Lj + Lk + 1
2 [Lj , Lk ] + · · · ∈ w

then {e−tLeff | t > 0} physical at all times.

Else {e−tLeff | t > 0} unphysical except t = 0; t = teff etc.
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Lie – Markov Correspondence
Quantum Channels as Lie Semigroups

Corollary (cave: ‘ woodcut ’, details in Rep. Math. Phys. 64 (2009) 93.)

A channel is (time dependent) Markovian, iff there is
representation T = e−L1e−L2 · · · e−Lr so that the
L1,L2, . . . ,Lr generate a Lie wedge wr .

Moreover, T specialises to time independent form, iff
its Lie wedge wr specialises to a Lie semialgebra.

Complements recent work: Wolf,Cirac, Commun. Math. Phys. (2008) & Wolf,Eisert,Cubitt,Cirac, PRL (2008)
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Controllability in Open Systems
Notions Rep. Math. Phys. 64 (2009) 93

Consider bilinear control system

Ẋ = −(A +
∑

j ujBj)X with A := iĤd + ΓL and Bj := iĤj

controllability condition for closed systems:
〈iHd , iHj | j = 1,2, . . .m〉Lie = su(N)

WH-condition for open systems:
〈iHd , iHj | j = 1,2, . . .m〉Lie = su(N)

H-condition for open systms:
〈iHj | j = 1,2, . . .m〉Lie = su(N)



I. Q-Control

II. Q-Simulation

III. Algorithms

IV. Applications

Outlook

Conclusions

A1

A2

A3

Controllability in Open Systems
Notions Rep. Math. Phys. 64 (2009) 93

Consider bilinear control system
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Exploring Reachable Sets
Closed vs Open Systems arXiv: 1103.2703

closed controllable systems:
Reach ρ0 = OU(ρ0) := {Uρ0U† |U ∈ SU(N)}

open fully H-controllable systms:
Reach ρ0 ⊆ {ρ ∈ pos1 | ρ≺ρ0}

open systems satisfying WH-condition:
parameterisation involved, key: Lie semigroups
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Exploring Reachable Sets
by Lie Semigroups arXiv: 1103.2703

Bilinear control system: Ẋ = −(A +
∑

j ujBj)X

satisfies WH-condition with :
A := Hz + Γ0, B := uHy , and Γ0 := diag (1,0,1)

Lie wedge:
w0 = 〈Hy 〉 ⊕ −R+

0 conv
{[

sin(θ)
cos(θ)

1

]
·
[

Hx
Hz
Γ0

]
| θ ∈ R

}

0

‹H
x
›

‹H
y
›
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Exploring Reachable Sets
by Lie Semigroups arXiv: 1103.2703

satisfy WH-condition with :
A := Hz + Γ0, B := uHy , and Γ0 := diag (1,1,2)

Lie wedge:
w0 = 〈Hy 〉 ⊕ −R+

0 conv

8><>:
264

2 sin(θ)
2 cos(θ)
γ sin(2θ)

γ(1−cos(2θ))

(11+cos(2θ))/6

375 ·
264 Hx

Hz
py
∆
Γ0

375 ˛̨̨ θ ∈ R

9>=>;
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Exploring Reachable Sets
by Lie Semigroups arXiv: 1103.2703

closed controllable systems:
Reach ρ0 = OU(ρ0) := {Uρ0U† |U ∈ SU(N)}

open fully H-controllable systms:
Reach ρ0 = {ρ ∈ pos1 | ρ≺ρ0}

open systems satisfying WH-condition:
Reach ρ0 = S vec ρ0 where
S = eA1eA2 · · · eA` with A1,A2, . . . ,A` ∈ w
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Conclusions

Exploit symmetries for the Royal Road to:

1 Controllability
• absence of symmetry plus inclusion fermionic & bosonic systems

2 Simulability
• efficient q-simulation: algebraic understanding

3 DYNAMO Modular Platform

4 Lie Semigroups
• as new unifying framework for open systems
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• ready to use: http://qlib.org

4 Lie Semigroups
• as new unifying framework for open systems



I. Q-Control

II. Q-Simulation

III. Algorithms

IV. Applications

Outlook

Conclusions

A1

A2

A3

Conclusions

1 Controllability

2 Simulability

3 DYNAMO Modular Platform
• ready to use: http://qlib.org

4 Lie Semigroups
• as new unifying framework for open systems



I. Q-Control

II. Q-Simulation

III. Algorithms

IV. Applications

Outlook

Conclusions

A1

A2

A3

Acknowledgements

Thanks go to:

Robert Zeier
Shai Machnes, Uwe Sander, Pierre de Fouquières, Sophie Schirmer

Gunther Dirr, Corey O’Meara
integrated EU programme; excellence network; high-speed parallel cluster

Quantum Computing, 
Control & Communication

References:
J. Magn. Reson. 172, 296 (2005), PRA 72, 043221 (2005), PRA 84, 022305 (2011)

PRA 75, 012302 (2007); PRL 102 090401 (2009), JPB 44, 154013 (2011)
Rev. Math. Phys. 22, 597 (2010), Rep. Math. Phys. 64, 93 (2009);

PRA 81, 032319 (2010); PRB 81, 085328 (2010);

arXiv:0904.4654, IEEE Proc. ISCCSP 2010 23.2, Proc. MTNS, 2341 (2010),

arXiv: 1012.5256, arXiv: 1103.2703



I. Q-Control

II. Q-Simulation

III. Algorithms

IV. Applications

Outlook

Conclusions

A1
Design Rules

A2

A3

Sum up for the Quantum Engineer
quant-ph/0904.4654

Design Rules

For an n spin-1
2 system with a connected coupling graph

and no symmetries to be fully controllable it suffices that

(1) the coupling is Ising-ZZ and each qubit belongs to a
type that is jointly operator controllable locally,

(2) the coupling is Heisenberg-XXX and a single qubit
is controllable locally,

(3) the coupling is Heisenberg-XX and one adjacent
qubit pair is fully operator controllable (su(4)).
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Minimalistically Controlled Systems
Examples quant-ph/0904.4654

XY XYXY

Hd := 1
2

n−1P
k=2

(1 + γ)Xk Xk+1 + (1 − γ)Yk Yk+1 +
nP

i=2
Bi Zi

Example (inner symmetries)

Controls Drift Pars Lie Dim. Symmetry System L ie Algebra
H(1,2)

j Bi γ Operators

(a) XX12 0 0 10
P

i σ
(i)
z so(5)

(b) XY12 0 0.3 20
Q

i σ
(i)
z so(5) b⊕ so(5)

(c) Z1 1 0 25
P

i σ
(i)
z s

`
u(5)⊕ u(1)

´
(d) Z1 1 0.3 45

Q
i σ

(i)
z so(10)

(e) XX12 1 0 11
P

i σ
(i)
z s

`
o(5)⊕ u(1)

´
(f) XY12 1 0.3 45

Q
i σ

(i)
z so(10)

(f’) Z1, X1, XY12 1 0.3 55 λ · 1l so(11)

(g) Z1, X1, XXX12 0 0 1023 λ · 1l su(25)

(h) Z1, X1, XYZ12 1 0.3 1023 λ · 1l su(25)
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Q
i σ

(i)
z so(10)

(f’) Z1, X1, XY12 1 0.3 55 λ · 1l so(11)

(g) Z1, X1, XXX12 0 0 1023 λ · 1l su(25)

(h) Z1, X1, XYZ12 1 0.3 1023 λ · 1l su(25)
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Control of Markovian Open Systems
beyond Decoherence-Free Subspaces (DFS)

Original Principle:
Code logical qubits in decoherence-free physical levels

master equation: ρ̇ = −(i adH +Γ) ρ
DFS: eigenspace to Γ with eigenval =0 (Bell states B)

Express Ĥ ≡ adH in eigenbasis of Γ (here 4 qubits)

Task: perform calculation (e.g. CNOT) within DFS
Zanardi, Rasetti, PRL 79 (1997), 3309.

Lidar, Chuang, Whaley, PRL 81 (1998), 2594.
Viola, Knill, Lloyd, PRL 82 (1999), 2417; 83 (1999), 4888;85 (2000), 3520.
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Express Ĥ ≡ adH in eigenbasis of Γ (here 4 qubits)

Task: perform calculation (e.g. CNOT) within DFS
Zanardi, Rasetti, PRL 79 (1997), 3309.

Lidar, Chuang, Whaley, PRL 81 (1998), 2594.
Viola, Knill, Lloyd, PRL 82 (1999), 2417; 83 (1999), 4888;85 (2000), 3520.



I. Q-Control

II. Q-Simulation

III. Algorithms

IV. Applications

Outlook

Conclusions

A1

A2
Markovian

Systems I, II

Results

Non-Markovian

A3

Control of Markovian Open Systems
System of 2 Qubits Coded in 4 Spins

¥ 1 logical qubit coded by 2 physical qubits in Bell states

|0〉L := |ψ+〉 = 1√
2
(|01〉+ |10〉) , |1〉L := |ψ−〉 = 1√

2
(|01〉− |10〉)

B := span {|ψ±〉〈ψ±|, |ψ∓〉〈ψ±|}
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¥ 1 logical qubit coded by 2 physical qubits in Bell states

|0〉L := |ψ+〉 = 1√
2
(|01〉+ |10〉) , |1〉L := |ψ−〉 = 1√

2
(|01〉− |10〉)

B := span {|ψ±〉〈ψ±|, |ψ∓〉〈ψ±|}

¥ 2 logical qubits coded by 4 physical qubits

z z z z1√
2
(|01〉+ |10〉) 1√

2
(|01〉+ |10〉)

1√
2
(|01〉 − |10〉) 1√

2
(|01〉 − |10〉)
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Control of Markovian Open Systems
System of 2 Qubits Coded in 4 Spins

¥ 1 logical qubit coded by 2 physical qubits in Bell states

|0〉L := |ψ+〉 = 1√
2
(|01〉+ |10〉) , |1〉L := |ψ−〉 = 1√

2
(|01〉− |10〉)

B := span {|ψ±〉〈ψ±|, |ψ∓〉〈ψ±|}

¥ 2 logical qubits coded by 4 physical qubits

z z z z1√
2
(|01〉+ |10〉) 1√

2
(|01〉+ |10〉)

1√
2
(|01〉 − |10〉) 1√

2
(|01〉 − |10〉)

¥ protection against T2 relaxation (Redfield: Γ ∼ [ZZ , [ZZ , ρ]])

because [ρ,ZZ ] = 0 ∀ ρ ∈ B ⊗ B
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Control of Markovian Open Systems
Model with 4 Linearly Coupled Spins

¥ controls

z z z z(Z (Z−Z ) −Z )
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Control of Markovian Open Systems
Model with 4 Linearly Coupled Spins

¥ controls

z z z z(Z (Z−Z ) −Z )

¥ drift: Ising (ZZ) and Heisenberg (XX) interactions

z z z zZZXX XXSystem-I
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Model with 4 Linearly Coupled Spins

¥ controls

z z z z(Z (Z−Z ) −Z )

¥ drift: Ising (ZZ) and Heisenberg (XX,XXX) interactions

z z z z
XXX

ZZXX XX

XX XXSystem-II

System-I
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Control of Markovian Open Systems
Model with 4 Linearly Coupled Spins

¥ controls

z z z z(Z (Z−Z ) −Z )

¥ drift: Ising (ZZ) and Heisenberg (XX,XXX) interactions

z z z z
(1 Hz) XXX

ZZXX XX

(2 Hz) XX (2 Hz) XXSystem-II

System-I

¥ relaxation (T−1
2 : T−1

1 = 4.0 s−1 : 0.024 s−1 ' 170 : 1)
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Control of Markovian Open Systems
Algebraic Analysis of System I

¥ System-I: staying within slowly-relaxing subspace

• drift Hamiltonian D1 with Ising-ZZ
• controls C1,2

D1 := Jxx (xx1l1l + 1l1lxx + yy1l1l + 1l1lyy) + Jzz 1lzz1l

C1 := z1l1l1l− 1lz1l1l

C2 := 1l1lz1l− 1l1l1lz .

⇒ 〈D1,C1,C2〉Lie
∣∣
B⊗B

rep
= su(4)

• Liouville subspace B ⊗ B of Bell states
spans states protected against T2-relaxation
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Control of Markovian Open Systems
Algebraic Analysis of System II

¥ System-II: driving outside slowly-relaxing subspace
• drift: extended to isotropic Heisenberg-XXX

D1 + D2 := Jxx
(
xx1l1l + 1l1lxx + yy1l1l + 1l1lyy

)
+Jxyz

(
1lxx1l + 1lyy1l+1lzz1l

)
• Lie-algebraic closure: in 66-dim. Lie algebra

dim〈(D1 + D2),C1,C2〉Lie = 66 [
iso
= so(12)]

• su(4) merely subalgebra

dim〈D1,C1,C2〉Lie = 15
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Control of Markovian Open Systems
Algebraic Analysis of System II

System-II:
¥ full controllability within slowly-relaxing subspace
• observation

e−iπC1(D1+D2)eiπC1 = D1−D2

• Trotter limit

lim
n→∞

(
e−i(D1+D2)/(2n)e−i(D1−D2)/(2n)

)n
= e−iD1

• reduction of dynamics

System-II
infinite # switchings−−−−−−−−−−−→ System-I



I. Q-Control

II. Q-Simulation

III. Algorithms

IV. Applications

Outlook

Conclusions

A1

A2
Markovian

Systems I, II

Results

Non-Markovian

A3

Control of Markovian Open Systems
Algebraic Analysis of System II

System-II:
¥ full controllability within slowly-relaxing subspace
• observation

e−iπC1(D1+D2)eiπC1 = D1−D2

• Trotter limit

lim
n→∞

(
e−i(D1+D2)/(2n)e−i(D1−D2)/(2n)

)n
= e−iD1

• reduction of dynamics

System-II
infinite # switchings−−−−−−−−−−−→ System-I



I. Q-Control

II. Q-Simulation

III. Algorithms

IV. Applications

Outlook

Conclusions

A1

A2
Markovian

Systems I, II

Results

Non-Markovian

A3

Control of Markovian Open Systems
Algebraic Analysis of System II

System-II:
¥ full controllability within slowly-relaxing subspace
• observation

e−iπC1(D1+D2)eiπC1 = D1−D2

• Trotter limit

lim
n→∞

(
e−i(D1+D2)/(2n)e−i(D1−D2)/(2n)

)n
= e−iD1

• reduction of dynamics

System-II
infinite # switchings−−−−−−−−−−−→ System-I



I. Q-Control

II. Q-Simulation

III. Algorithms

IV. Applications

Outlook

Conclusions

A1

A2
Markovian

Systems I, II

Results

Non-Markovian

A3

Examples of Quantum Control
Decoherence Control: Results

Typical: system drives outside protected subspace

no relaxation with relaxation (T2, T1)
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Control of Markovian Open Systems
Realising Quantum Gates with Minimal Relaxation

CNOT: Projection into Subspaces

¥ time-optimised
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quant-ph/0609037

¥ CNOT: comparison of methods

mbox by decoherence control: conventional:
> 95% fideltity < 15% fidelity
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Alternative Decoherence Control
Paper and Pen Approach: TROTTER Expansion

Decoherence-Protected CNOT-Gate via

¥ logical qubits
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¥ realisation by System-II
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Control of Non-Markovian Open Systems
Qubit Coupled via Two-Level Fluctuator to Spin Bath

with P. Rebentrost and F. Wilhelm

Model:
qubit coupled to a two-level fluctuator coupled to a bath

H = HS + HI + HB

HS = E1(t)σz + ∆σx + E2τz + Λσzτz

HI =
∑

i λi(τ
+bi + τ−b†i )

HB =
∑

i ~ωib
†
i bi

Ohmic bath spectrum: J(ω) =
P

i λ2
i δ(ω − ωi ) = κωΘ(ω − ωc)

couplings λi , damping κ, high-freq. cut-off ωc

PRL 102 090401 (2009)
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Qubit Coupled via Two-Level Fluctuator to Spin Bath

with P. Rebentrost and F. Wilhelm

10−5

10−4

10−3

10−2

10−1

G
at

e 
er

ro
r

2 4 6 8 10 12 14 16 18

10−3

10−2

Time [1/∆]

10−4

10−3

κ=0
κ=0.0001
κ=0.001
κ=0.005
κ=0.02
κ=0.2

T1 Limit
2 T1 Limit
κ=0.005

Rabi opt.Penalty

←RABI pulse
←cut error by factor ≤ 10

with optimal control

PRL 102 090401 (2009)



I. Q-Control

II. Q-Simulation

III. Algorithms

IV. Applications

Outlook

Conclusions

A1

A2
Markovian

Systems I, II

Results

Non-Markovian

A3

Control of Non-Markovian Open Systems

¥ Principle: embed to Markovian and project

ρ0 = ρSE(0)⊗ ρB(0)
AdW (t)−−−−−−−−→ ρ(t) = W (t)ρ0W †(t)

ΠSE

ytrB ΠSE

ytrB

ρSE(0)
FSE (t)−−−−−−−−→

Markovian
ρSE(t)

ΠS

ytrE ΠS

ytrE

ρS(0)
FS(t)−−−−−−−−−→

non−Markovian
ρS(t)
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Divisibility II

Quantum Channels
Lie and Markov Properties are 1 : 1 Rep. Math. Phys. 64 (2009) 93–121

¥ Viewing Markovian Quantum Channels as Lie Semigroups
with GKS-Lindblad Generators as Lie Wedge
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Divisibility II

Divisibility of CP-Maps
Basic Structure

Observe: two notions

Definition

A CP-Map T is ( infinitely) divisible, if ∀r ∈ N there is
a S with T = Sr .
A CP-map T is infinitesimally divisible if ∀ε > 0 there
is a sequence

∏r
j=1 Sj = T with ||Sj − id|| ≤ ε .
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Divisibility of CP-Maps
Basic Structure

Observe: two notions

Definition

A CP-Map T is ( infinitely) divisible, if ∀r ∈ N there is
a S with T = Sr .
A CP-map T is infinitesimally divisible if ∀ε > 0 there
is a sequence
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Divisibility II

Markovianity⇔ Divisibility
Basic Structure

Notions:
time-(in)dependent CP-map: solution of
time-(in)dependent master eqn. Ẋ = −L ◦ X .

Theorem (Wolf & Cirac (2008))

The set of all time-independent Markovian CP-maps
coincides with the set of all ( infinitely) divisible
CP-maps.
The set of all time-dependent Markovian CP-maps
coincides with the closure of the set of all
infinitesimally divisible CP-maps.
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Divisibility II

Lie Semigroups
Basic Structure Rep. Math. Phys. 64 (2009) 93

Observe: semigroup structure

Reach(1l, t1) ◦ Reach(1l, t2) = Reach(1l, t1 + t2) ∀tν ≥ 0

Definition

A subsemigroup S ⊂ G of a Lie group G with
algebra g contains 1l and follows S ◦ S ⊆ S. Its
largest subgroup is denoted E(S) := S ∩ S−1.
Its tangent cone is defined by

L(S) := {γ̇(0) | γ(0) = 1l, γ(t) ∈ S, t ≥ 0} ⊂ g,

for any γ : [0,∞)→ G being a smooth curve in S.
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Lie Semigroups
Structure of the Tangent Cone: Lie Wedges and Semialgebras

Definition (Lie Wedge and Lie Semialgebra)

A wedge w is a closed convex cone of a finite-dim.
real vector space.
Its edge E(w) := w∩-w is the largest subspace in w.
It is a Lie wedge if it is invariant under conjugation

eadg (w) ≡ egwe−g = w

for all edge elements g ∈ E(w).
A Lie semialgebra is a Lie wedge compatible with
BCH multiplication X ∗ Y := X + Y + 1

2 [X ,Y ] + . . .

so that for a BCH neighbourhood B of 0 ∈ g

(w ∩ B) ∗ (w ∩ B) ∈ w .
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GKS-Lindblad Operators as Lie Wedge
Rep. Math. Phys. 64 (2009) 93

Define as completely positive, trace-preserving invertible
linear operators the set Pcp, and let Pcp

0 denote the
connected component of the unity.

Theorem (Kossakowski, Lindblad)

The Lie wedge to the connected component of the unity
of the semigroup of all invertible CPTP maps is given by
the set of all linear operators of GKS-Lindblad form:

L(Pcp
0 ) = {−L|L = −(i adH +ΓL)} with

ΓL(ρ) = 1
2

∑
k

{V †
k Vk , ρ}+ − 2VkρV †

k
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GKS-Lindblad Operators as Lie Wedge
Rep. Math. Phys. 64 (2009) 93

Theorem

The semigroup

T :=
〈

exp
(
L(Pcp

0 )
)〉

S ⊆ Pcp
0

generated by L(Pcp
0 ) is a Lie subsemigroup with global

Lie wedge L(T) = L(Pcp
0 ).
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GKS-Lindblad Operators as Lie Wedge
Rep. Math. Phys. 64 (2009) 93

Corollary (to Wolf, Cirac (2008))

Pcp
0 itself is not a Lie subsemigroup, yet it comprises

(1) the set of time independent Markovian channels, i.e.
the union of all one-parameter Lie semigroups
{exp(−Lt) | t ≥ 0} with L in GKS-Lindblad form;

(2) the closure of the set of time dependent Markovian
channels, i.e. the Lie semigroup T;

(3) a set of non-Markovian channels whose intersection
with Pcp

0 has non-empty interior.
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Time Dependent Markovian Channels
Lie Properties Rep. Math. Phys. 64 (2009) 93

Corollary

A quantum channel is time dependent Markovian iff it
allows for a representation T =

∏r
j=1 Sj , where

S1 = e−L1 ,S2 = e−L2 , . . . ,Sr = e−Lr so that there is a
global Lie wedge wr generated by L1,L2, . . . ,Lr .
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Time Independent Markovian Channels
Lie Properties Rep. Math. Phys. 64 (2009) 93

Corollary

Let T =
∏r

j=1 Sj be a time dependent Markovian channel
with S1 = e−L1 ,S2 = e−L2 , . . . ,Sr = e−Lr and let wr
denote the smallest global Lie wedge generated by
L1,L2, . . . ,Lr . Then

T boils down to a time independent Markovian
channel, if it is sufficiently close to the unity and if
there is a representation so that the associated Lie
wedge wr specialises to a Lie semialgebra.

Complements recent work: Wolf,Cirac, Commun. Math. Phys. (2008) & Wolf,Eisert,Cubitt,Cirac, PRL (2008)
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Effective Liouvillians
Lie Properties Rep. Math. Phys. 64 (2009) 93

Consider: controlled system with time dep Liouvillians {Lu(t)}

Ẋ = −Lu(t)X = −(iHd + i
∑

j uj(t)Hj + Γ)X

Liouvillians Lu form

Lie wedge w

Lie semialgebra s ⊂ w if {Lu} BCH compatible with w

then {e−tLeff | t > 0} physical at all times.

Else {e−tLeff | t > 0} unphysical except t = 0; t = teff etc.



I. Q-Control

II. Q-Simulation

III. Algorithms

IV. Applications

Outlook

Conclusions

A1

A2

A3
Markoviantity, Divisibility I

Lie Semigroups

GKS-Lindblad Gen.

Divisibility II

Effective Liouvillians
Lie Properties Rep. Math. Phys. 64 (2009) 93

Consider: controlled system with time dep Liouvillians {Lu(t)}
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