On Categorical Characterisations of No-signaling Theories

Mariami Gachechiladze

University of Oxford

University of Siegen

MSc Thesis supervised by Dr. Chris Heunen Department of Computer Science

March 9, 2015

Agenda

- Category theory essentials;
- Categorical quantum mechnichs; Diagrams;
- Teleportation using graphical calculus;
- No-cloning theorem using graphical calculus;
- ► Kinematic independence of observables ⇔ No-signaling using graphical calculus.

Category Theory Essentials

Definition – Category Theory

A category C consists of:

- ▶ a collection Ob(C) of objects;
- for every two objects A, B a collection C(A, B) of morphisms;
- ▶ for every two morphisms $f \in C(A, B)$ and $g \in C(B, C)$, a morphism $g \circ f \in C(A, C)$;
- ▶ for every object A a morphism $id_A \in C(A, A)$.

These must satisfy the following properties, for all objects A, B, C, D, and all morphisms $f \in C(A, B), g \in C(B, C), h \in C(C, D)$:

- ▶ associativity: $h \circ (g \circ f) = (h \circ g) \circ f$;
- identity: $id_B \circ f = f = f \circ id_A$.

Functors; Natural Transformations - Category Theory

Don't just look at the objects; take the morphisms into account too.

A *functor* is a morphisms between two categories:

 $F: \mathcal{C} \to \mathcal{D}$ assigns an object FA of \mathcal{D} to every object A in \mathcal{C} and

 $Ff: FA \rightarrow FB$ to every morphism $f: A \rightarrow B$.

Identity and composition is preserved:

$$F(g \circ f) = Fg \circ Ff, \qquad Fid_A = id_{FA}$$

Categories were only introduced to allow functors to be defined; functors were only introduced to allow natural transformations to be defined.

Additional Structure: Monoidal Categories

A monoidal category is a category C equipped with the following data, satisfying the property of coherence:

- ▶ a functor \otimes : $\mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$, called tensor product;
- ▶ and object $I \in C$, called the unit object;
- ▶ a natural transformation whose components $(A \otimes B) \otimes C \xrightarrow[\alpha_{A,B,C}]{} A \otimes (B \otimes C)$ are called associators;
- ▶ a natural isomorphism whose components $I \otimes A \xrightarrow{\lambda_A} A$ are called a left unitors:
- ▶ a natural isomorphism whose components $A \otimes I \xrightarrow{\rho_A} A$ are called right unitors;

Example - Category of Hilbert Spaces

The monoidal category of Hilbert spaces – **Hilb** is defined in the following way:

- Objects are Hilbert spaces;
- **Morphisms** are bounded linear maps f, g, h...;
- Compositions is composition of linear maps;
- ► Tensor product ⊗: Hilb × Hilb → Hilb is a tensor product of Hilbert spaces
- ► The unit object / is the one-dimensional Hilbert space C;
- ▶ Associators $\alpha_{H,J,K:}(H \otimes J) \otimes K \to H \otimes (J \otimes K)$ are unique linear maps satisfying $|\phi\rangle \otimes (|\chi\rangle \otimes |\psi\rangle) \mapsto (|\phi\rangle \otimes |\chi\rangle) \otimes |\psi\rangle$;
- ▶ **Left unitors** $\lambda_H : \mathbb{C} \otimes H \to H$ –unique lin. maps $1 \otimes |\phi\rangle \mapsto |\phi\rangle$;
- ▶ **Right unitors** $\rho_H: H \otimes \mathbb{C} \to H$ –unique lin. maps $|\phi\rangle \otimes 1 \mapsto |\phi\rangle$

Example - Category of Sets and Relations

The monoidal category of Sets – **Rel** is defined in the following way:

- ► Objects sets;
- ▶ **Morphisms** are $A \rightarrow B$ are relations
- ▶ Compositions are composition of linear maps of two relations $A \rightarrow B$ and $B \rightarrow C$;
- ▶ **Identity morphisms** $id : A \rightarrow A$ are relations $\{(a, a) | a \in A \subset A \times A\};$
- Tensor product × : is an usual cartesian product of sets.
- ▶ The unit object is a chosen 1-element set .

Categorical Quantum Mechanics & Diagrammatic Representation

Graphical Calculus - Categorical Quantum Mechanics

Object A: Morphism $f: A \rightarrow B$

$$f \circ id_A = f = id_B \circ f$$

Composition: $g \circ f : A \rightarrow B \rightarrow C$

Interchange Law

Graphical Calculus – Categorical Quantum Mechanics

A B a b

State: $I \rightarrow A$

 $I \to A \otimes B$

A joint state is a product state if $I \xrightarrow{\lambda_I^{-1}} I \otimes I \xrightarrow{a \otimes b} A \otimes B$

An entangled state is a joint state which is not a product state. This state represents the preparation of $A \otimes B$ which cannot be decomposed as the separate preparation of A alongside with B.

Graphical Calculus – Categorical Quantum Mechanics

Where is an inner product?

Inner product gets encapsulated in the dagger monoidal category with the power of adjoints:

$$\mathbb{C} \stackrel{\phi,\psi}{\to} H$$

$$(\mathbb{C} \stackrel{\phi}{\to} H \stackrel{\psi^\dagger}{\to} \mathbb{C}) = \psi^\dagger(\phi(1)) = \left< 1 | \psi^\dagger(\phi(1)) \right> = \left< \psi | \phi \right>$$

which can be represented in the diagrammatic language in the following way:

$$\frac{\sqrt{\psi}}{\sqrt{\phi}} = \langle \psi | \phi \rangle$$

Snake Equations

We draw an object L as a wire with an upward-pointing arrow, and a right dual R as a wire with a downward-pointing arrow.

The unit $I \xrightarrow{\eta} R \otimes L$ and counit $L \otimes R \xrightarrow{\varepsilon} I$ are then drawn as bent wires:

The duality equations then take the following graphical form:

Entanglement

Our Claim: Dual objects in a monoidal category provide a categorical way to model entanglement of a pair of systems in an abstract way.

Given the dual objects $L\dashv R$, the entangled state is an unit $I\stackrel{\eta}{\to} R\otimes L$. And the corresponding unit is an entanglement effect $L\otimes R\stackrel{\varepsilon}{\to} I$.

Lemma Let $L\dashv R$ be dual objects in a symmetric monoidal category. If the unit $I\stackrel{\eta}{\to} R\otimes L$ is a product state, then id_L and id_R factor through the monoidal unit object I.

Proof. Suppose that η is the morphism $I \xrightarrow{\lambda_i^{-1}} I \otimes I \xrightarrow{r \otimes l} R \otimes L$. Then

$$L =$$

A similar argument holds for id_R .

Teleportation using an "Orthodox" formalism

Alice and Bob share an entangled state: $|\beta_{00}\rangle = \frac{1}{\sqrt{2}}[|00\rangle + |11\rangle]$. Alice has an unknown state $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ and using some local transformations and classical communication of two bits, she needs $|\psi\rangle$ to Bob.

$$|\psi_0\rangle |\beta_{00}\rangle = \frac{1}{\sqrt{2}}(\alpha(|0\rangle |00\rangle + |0\rangle |11\rangle) + \beta(|1\rangle |00\rangle + |1\rangle |11\rangle)$$

1. Alice applies the CNOT gate:

$$\ket{\psi_1} = \frac{1}{\sqrt{2}} (\alpha(\ket{0}\ket{00} + \ket{0}\ket{11}) + \beta(\ket{1}\ket{10} + \ket{1}\ket{01})$$

2. Alice applies Hadamard operation to the rist qubit and gets:

$$|\psi_2\rangle = \frac{1}{2}[|00\rangle (\alpha |0\rangle + \beta |1\rangle) + |01\rangle (\alpha |1\rangle + \beta |0\rangle) + |10\rangle (\alpha |0\rangle - \beta |1\rangle) + |11\rangle (\alpha |1\rangle - \beta |0\rangle)]$$

No-Cloning Theorem Using Graphical Calculus

Monoid and Comonoid Structures

Comonoids

Clearly, copying should be an operation of type $A \xrightarrow{d} A \otimes A$. We draw it in the following way:

instead of

instead of

instead of

instead of

No Uniform Copying!

If a symmetric monoidal category has uniform copying, then the following diagram must commute:

This turns out to be a drastic restriction on the category, as we will see in the Copying collapse theorem below. First we need some preparatory lemmas.

No Uniform Copying

Lemma 1. If a compact category has uniform copying, then

Proof.

$$A^* \quad A \quad A^* \quad A = \underbrace{\begin{array}{c} A^* \quad A \quad A \\ d_I \end{array}}_{A^* \quad A \quad A^* \quad A} \qquad \text{(because } d_I = \rho_I \text{)}$$

$$= \underbrace{\begin{array}{c} A^* \quad A \quad A^* \quad A \\ d_I \end{array}}_{A^* \otimes A} \qquad \text{(by naturality of } d \text{)}$$

No Uniform Copying - Proof Continued

No Uniform Copying

Lemma 2. If a compact category has uniform copying, then $\sigma_{A,A} = id_{A\otimes A}$.

Proof.

Copy Collapses

Theorem If a compact category has uniform copying, then every f endomorphism is a scalar multiple of the identity.

Proof.

Thus, if a compact category has uniform copying, all endo-homsets are 1-dimensional, in the sense that they are in bijection with the scalars. Hence, in this sense, all objects are 1-dimensional, and the category degenerates.

Categorical Characterisations of No-signaling Theories Supervisor: Dr. Chris Heunen

Can Quantum Theory be reduced to Information Theoretic Constraints?

The theory is quantum if and only if the following information-theoretic constraints are satisfied:

- No superluminal information transmission between two distinct systems by acting with a measurement operator on one of them.
- No broadcasting of the information contained in an unknown state.
- 3. No unconditionally secure bit commitment.

Can Quantum Theory be reduced to Information Theoretic Constraints?

The previous constraints are equivalent to ones here in **FHilb**:

- (a) If \mathcal{A} and \mathcal{B} are distinct physical systems, then the observables of \mathcal{A} commute with those of \mathcal{B} .
- (b) The observables of an individual system do not all commute with each other.
- (c) There are physically realizable nonlocal entangled states.

Banach Algebras and C*-algebras

If a linear associate algebra over the complex field \mathbb{C} , A has a norm and is closed, it is called a **Banach** algebra.

We can now define an involution map on an algebra A: $*: A \rightarrow A$, which $a \mapsto a^*$, where $a, a^* \in A$ and

- ► $a^{**} = a$;
- $(\lambda a + \mu b)^* = \bar{\lambda} a^* + \bar{\mu} b^*;$
- $(ab)^* = b^*a^*.$

Definition: A Banach algebra A equipped with an involution map is a C^* - algebra A, if it satisfies:

$$||aa^*|| = ||a||^2$$

Frobenius Algebras

Definition: A dagger Frobenius algebra is an object A in a dagger monoidal category together with morphisms $m:A\otimes A\to A$ and $e:I\to A$, called a multiplication and an unit respectively, satisfying the following diagrammatic equations:

Positivity and completely positive maps between C*-algebras

In [2] an abstract description of positive elements is generalized to maps $f: A \to B$, between two C^* -algebras (A, , , , ,) and (B, , , , ,) such that there exists an object X, called ancilla, and a map $g: A \to X \otimes B$ satisfying the following diagrammatic equality:

There two maps are equivalent for some object X and morphism: $A \to X \otimes B$.

Heisenberg Principle

If we get information from a system whose algebra $\mathcal A$ is a factor and if we throw away (disregard) this information, then some initial states have inevitably changed.

Heisenberg Principle in Rel

Theorem: Heisenberg principle fails in **Rel**.

Proof. As we are in CP^* – construction we can consider every object of a factor \mathcal{A} to have a structure of pair-of-pants-Frobenius-algebras: $\mathcal{A} \longmapsto (X_* \otimes X, \bigwedge, \bigwedge)$ and $\mathcal{B} \longmapsto (B, \bigwedge, \bigwedge)$

A map $M^*: \mathcal{A}^* \to \mathcal{A}^* \otimes \mathcal{B}^*$ can be represented as:

Heisenberg Principle in Rel

For this we can define a set A to be a two element set $\mathbb{Z}_2 := \{a, 1\}$ and B is also $\mathbb{Z}_2 := \{2, B\}$, where

$$b.b = 2$$
 and $b.2 = 2.b = b$,

and then,

$$A \otimes A := \{(1,1), (a,1), (1,a) (a,a)\}$$

 $h \in (\mathcal{A} \times \mathcal{A}) \times (x \times \mathcal{A} \times \mathcal{A} \times \mathcal{B})$, where x is an ancilla part.

$$h := \{((a,a),(x,1,a,2)),\ ((a,1),(x,1,1,b))\}$$

Heisenberg Principle in Rel

#	h	h^*	$h^* \otimes h$
1	((a,a),(x,1,a,2))	((a,a),(2,a,1,x))	((a,a),(a,a))
2	((a,a),(x,1,a,2))	((1,a),(x,1,1,b))	((1,a),(1,a))
3	((a,1),(x,1,1,b))	((a,a),(2,a,1,x))	((a,1),(a,1))
4	((a,1),(x,1,1,b))	((1,a),(x,1,1,b))	((1,1),(1,1))

Kinematic independence \Rightarrow No-signaling can be described using a following:

 $\mathcal A$ and $\mathcal B$ are C^* -algebras corresponding to Alice's and Bob's subsystems. We take $u\in \mathcal A\vee \mathcal B$

Alice performs a non-selective measurement on u:

$$T(u) = \sum_{i=1}^{n} E_i^{1/2} u E_i^{1/2},$$

where $\sum_{i=1}^{n} E_i^{1 \setminus 2} = I$ and E_i is a positive operator in \mathcal{A} . \mathcal{T} should leave Bob's system invariant: $\mathcal{T}(B) = B$.

Kinematic independence \Rightarrow No-signaling diagrammatically:

No superluminal information transfer via making a measurement between two kinematically independent systems can be described using a following diagrammatic representation:

Therem: This representation is indeed valid in FHilb:

Proof:

This completes the proof.

Theorem: Kinematic independence does not always entail no-signaling in **Rel**.

Proof: Very similar to Heisenberg Principle proof, threrefore skipped.

From No-signaling to Independence

We are looking for a non-abelian group for which no-signaling still works.

Try 1: Differently from in **FHilb**, in **Rel** not all the normal operators are internally diagonalisable.

Try 2: A non-abelian symmetric group S_3

Try 3: A dihedral group of order 8 (Dih4).

But no success! :(

Further Plan of Attack

- Check if the the result is valid for every symmetric group Sn on elements
- 2. We can embed any group into the symmetric one and strengthen the conclusion.
- 3. Check if the non-commuting sub-groupoids cannot be just sub-groups and if they have to overlap, then: If U is a groupoid \Rightarrow No counterexample.

Conclusion

- Very basic introduction to category theory; FHilb & Rel;
- Use of category theory in quantum mechanics;
- No-cloning and Teleportation;
- Specific information-theoretic tasks formulated in the language of categorical quantum mechanics

Thanks for your attention!!!

Questions? Comments?