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Introduction
I A quantum state is useful for metrology

if it can outperform separable states in
the precision of parameter estimation.

I Quantum entanglement is required for
metrological usefulness [1].

I But there are highly entangled pure
states that are not useful [2], while
weakly entangled bound entangled
states can be useful [3, 4].

I Can all entangled states be made useful
with the idea of activation [5]?
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Figure 1: M copies of the N -partite state %.

I Large class of entangled states become
maximally useful in the limit of many
copies.

I Non-useful states can be made useful by
embedding into higher dimension.

Quantum Fisher information

Figure 2: Typical process of quantum metrology

I H is assumed to be local, that is,

H = h1 + · · ·+ hN , (1)

where hn’s are single-subsystem opera-
tors and hn = ⊗M

m=1hA
(m)
n

.
I Cramér-Rao bound:

(∆θ)2 ≥ 1/FQ[%,H], (2)

where the quantum Fisher information
(QFI) is

FQ[%,H] = 2
∑
k,l

(λk − λl)2

λk + λl
|〈k|H|l〉|2,

(3)
with % =

∑
k λk |k〉〈k| being the eigen-

decomposition. In general:

4(∆H)2 ≥ FQ[%,H] ≥ 4I%(H), (4)

with I%(H) = Tr(%H2)−Tr(√%H√%H).

Metrological gain
I We define the metrological gain com-

pared to separable states, for a given
Hamiltonian, by [6]

gH(%) = FQ[%,H]/F (sep)
Q (H), (5)

where the separable limit for local
Hamiltonians is

F (sep)
Q (H) =

N∑
n=1

[σmax(hn)−σmin(hn)]2.

(6)
I Eq. (5) can be maximized [6] over local

Hamiltonians

g(%) = max
localH

gH(%). (7)

I Goal is to calculate the metrological
gain gH(%⊗M ).

I Scaling propeties

I Shot-noise scaling: for separable
states gH ∼ 1 (FQ ∼ N) at best.

I Heisenberg scaling: for entangled
states gH ∼ N (FQ ∼ N2) at best.

Limit of many copies
Entangled states of N ≥ 2 qudits of dimen-
sion d are maximally useful in the infinite copy
limit if they live in the subspace

{|0..0〉 , |1..1〉 , ..., |d− 1, .., d− 1〉}. (8)

For the proof, use Eq. (4) and calculate
I%⊗M (H), where hn = (D⊗M )An

with D =
diag(+1,−1,+1,−1, ...) and

% =
d−1∑

k,l=0
ckl(|k〉 〈l|)⊗N . (9)

I Example:

%p = p |GHZ〉〈GHZ| (10)

+ (1− p) (|0〉〈0|)⊗N + (|1〉〈1|)⊗N

2 ,

with |GHZ〉 = 1√
2 (|0〉⊗N + |1〉⊗N ).

I Example: c00 = c11 = 1/2 and d = 2

I(c01, N) = N2[1− (1− 4|c01|2)M/2].
(11)

I Example: All entangled pure states of
the form

d−1∑
k=0

σk |k〉⊗N
, (12)

with
∑

k |σk|2 = 1.

Further examples
The state in Eq. (12) with

∑
k |σk|2 = 1 is

useful for d ≥ 3 and N ≥ 3.

I Embedding into higher dimension: The
state

|ψ〉 = σ0 |0〉⊗N + σ1 |1〉⊗N (13)

is useful if 1/N < 4|σ0σ1|2 [2]. But

σ0 |0〉⊗N + σ1 |1〉⊗N + 0 |2〉⊗N (14)

is always useful.
I Example: For |ψ〉⊗M from Eq. (13) with

1/N = 4|σ0σ1|2:

FQ = 4N2[1− (1− 1/N)M ]. (15)

I Scaling: |ψ〉⊗M with 1/N = 4|σ0σ1|2:

Figure 3: Dependence of the metrological gain
on the particle number N for (solid) M = 2000,
(dashed) 4000 and (dotted) 6000 copies.

White noise
Full-rank states of N qudits cannot be maxi-
mally useful in the infinite copy limit.

I Example: Isotropic state of two qubits

% = p |Ψme〉〈Ψme|+ (1− p)1/22, (16)

where |Ψme〉 = 1√
2 (|00〉+ |11〉).

Figure 4: The QFI and the bounds from Eq. (4)
as a function of M with hn = σ⊗M

z . With p = 0.9
(top) and p = 0.52 (bottom).

I Example: Embedding the noisy GHZ

%p = p |GHZ〉〈GHZ|+(1−p)1/2N . (17)

Figure 5: Embedding (solid) Eq. (17) with N =
3 into (left) d = 3, (right) d = 4.

References
[1] L. Pezzé and A. Smerzi, “Entanglement, nonlinear dynamics, and the heisenberg limit,” Phys. Rev.

Lett. 102, 100401 (2009).
[2] P. Hyllus, O. Gühne, and A. Smerzi, “Not all pure entangled states are useful for sub-shot-noise inter-

ferometry,” Phys. Rev. A 82, 012337 (2010).
[3] G. Tóth and T. Vértesi, “Quantum states with a positive partial transpose are useful for metrology,”

Phys. Rev. Lett. 120, 020506 (2018).

[4] K. F. Pál, G. Tóth, E. Bene, and T. Vértesi, “Bound entangled singlet-like states for quantum metrol-
ogy,” Phys. Rev. Res. 3, 023101 (2021).

[5] M. Navascués and T. Vértesi, “Activation of nonlocal quantum resources,” Phys. Rev. Lett. 106, 060403
(2011).

[6] G. Tóth, T. Vértesi, P. Horodecki, and R. Horodecki, “Activating hidden metrological usefulness,”
Phys. Rev. Lett. 125, 020402 (2020)


