On Geometry of Quantum State Space

József Pitrik

HUN-REN Wigner Research Centre for Physics, Budapest HUN-REN Alfréd Rényi Institute of Mathematics, Budapest Department of Analysis and Operations Research, BUTE

Common work with Géza Tóth (UPV/EHU Bilbao)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

On Geometry of Quantum State Space

Dissimilarity measures for probabilities

- Measures of Dissimilarity
- f-Divergences
- The Riemannian structure of statistical manifolds

Quantum Counterparts

- The quantum *f*-divergences
- Monotone metrics
- Monotone metrics as induced metric by f-divergences
- Metric adjusted skew informations

Our contribution

・何ト ・ヨト ・ヨト

Measures of Dissimilarity

Denote $\mathcal{P}(X)$ the space of probability measures on $X = \mathbb{R}^n$. A function D is called a **divergence** if

 $D:\mathcal{P}(X) imes\mathcal{P}(X)
ightarrow\mathbb{R},\quad D(p,q)\geq 0 ext{ with } D(p,q)=0 ext{ iff } p=q.$

A divergence D is

- symmetric if D(p,q) = D(q,p) for all $p,q \in \mathcal{P}(X)$.
- In fulfills the triangle inequality if D(p,q) + D(q,r) ≥ D(p,r) for all p, q, r ∈ P(X).
- Image monotone or fulfills the Data Processing Inequalities (DPI) if

 $D(S(p), S(q)) \leq D(p, q),$

for any stochastic map (Markov Kernel) $S : \mathcal{P}(X) \to \mathcal{P}(X)$.

イロト 不得 トイヨト イヨト 二日

Remarks:

- If we consider discrete probability distributions i.e. *p* = (*p*₁, *p*₂,..., *p_n*)^T, with (∀*i* : *p_i* ≥ 0), ∑_{i=1}ⁿ *p_i* = 1, then any stochastic map S is given by a left-stochastic transition matrix (S_{ij}), i.e. (∀*i*, *j* : S_{ij} ≥ 0) and (∀*j* : ∑_i S_{ij} = 1).
- We can interpret columns of a transition matrix as vectors of a conditional probability: $S_{.j} = p(.|j)$, which effectly randomizes the input probability vectors.
- If for a divergence D the conditions (1) and (2) hold then it is called a distance.

For simplicity, we primarily consider discrete probability distributions.

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

f-Divergences (Imre Csiszár, 1967)

For any given convex function $f : \mathbb{R}^+ \to \mathbb{R}^+$ such that f(1) = 0, an f-divergence is defined as

$$D_f(p,q) = \sum_i p_i f\left(\frac{q_i}{p_i}\right).$$

Some properties

- For f*(x) = xf(x⁻¹) we have D_f(p, q) = D_{f*}(q, p) so D_f is symmetric if f* = f.
- The convexity of f ensures that D_f is monotone (fulfills the DPI).
- Of course, not every monotone divergence constitutes an *f*-divergence: for any non-decreasing $g : \mathbb{R}^+ \to \mathbb{R}^+$ with g(0) = 0, $g(D_f(.,.))$ gives a monotone divergence, which is not an *f*-divergence.

イロト 不得 トイヨト イヨト 二日

Csiszár's characterisation

Theorem Assume that a number $C(p,q) \in \mathbb{R}$ is associated to probability distributions on the same set X for all finite set X. If

- C(p,q) is invariant under the permutations of the basic set X, and
- **2** if A is a partition of X and $p_A(A) := \sum_{x \in A} p(x)$, then $C(p_A, q_A) \leq C(p, q)$ with equality iff $p_A(A)q(x) = q_A(A)p(x)$ whenever $x \in A \in A$,

then there exists a convex function $f : \mathbb{R}^+ \to \mathbb{R}$ which is continous at 0 and $C(p,q) = D_f(p,q)$ for every p, q.

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Some examples for *f*-divergences

• For
$$f(x) = \frac{1}{2}|1 - x|$$
 the *f*-divergence is

$$T(p,q) = \frac{1}{2} \sum_{i} |p_i - q_i|$$
 the Total Variation (TV) distance.

• For $f(x) = \frac{1-x^{lpha}}{1-lpha}$, $0 \le lpha < 1$ the f-divergences are

$$H_{\alpha}(p,q)=rac{1}{1-lpha}\left(1-\sum_{i}p_{i}^{lpha}q_{i}^{1-lpha}
ight)=rac{1}{1-lpha}(1-\xi_{lpha}(p,q))$$

the Hellinger divergences parametrized by α . Here $\xi_{\alpha}(p,q) = \sum_{i} p_{i}^{\alpha} q_{i}^{1-\alpha}$ are called Chernoff coefficients.

イロト 不得下 イヨト イヨト 二日

The $\alpha = 1/2$ case is crucial:

$$H_{1/2}(p,q) = 2(1 - \sum_{i} \sqrt{p_i q_i}) = 2(1 - F(p,q))$$

squared Hellinger distance, where $F(p,q) = \xi_{1/2}(p,q) = \sum_i \sqrt{p_i q_i}$ is the Bhattacharyya coefficient.

• For $f(x) = -\log x$ we get for the *f*-divergence

$$\mathit{KL}(p,q) = \sum_i p_i \log rac{p_i}{q_i}$$

the Kullback-Leibler divergence or relative entropy.

イロト 不得下 イヨト イヨト 二日

Example: Hypothesis Testing Tasks

Objective: correctly identify, based on the outcomes $x^n = (x_1, \ldots, x_n)$ of *n* independent rounds, which of given PDs p and q is the one governing the experiment (the r. v. $X \sim p$ or q) **Decision function:** \mathcal{D} : $X^n \to \{0, 1\}$, s.t if $\mathcal{D}(x_n) = 0 \Rightarrow$ one concludes *p* to be correct PD if $\mathcal{D}(\mathsf{x}_{\mathsf{n}}) = 1 \Rightarrow$ one concludes *q* to be correct PD Hypothesis Testing: H_0 : "p is the true PD" H_1 : "q is the true PD" Types of errors: type-I errors ("false positive"): H_0 is rejected based on the data despite actually holding true $\Rightarrow P_n(q|p)$ type-II errors ("false negative"): H_0 is maintained although the data has actually been generated in accordance with $H_1 \Rightarrow P_n(p|q)$

・ロト ・ 四ト ・ ヨト ・ ヨ

I. Symmetric Hypothesis Testing The goal is minimising the *average error probability*

$$p_n^{err} := \pi_p P_n(q|p) + \pi_q P_n(p|q),$$

where π_p and π_q are the *a priori* probabilities of *p* and *q* resp. $(\pi_p + \pi_q = 1)$

O Single-shot scenario (n = 1)

$$p_{min}^{err} = rac{1}{2}(1-T(p,q))$$

2 Asymptotic scenario $(n \to \infty)$

$$p_{n,min}^{err} \leq \xi(p,q)^n,$$

where $\xi(p,q) := \min_{0 \le \alpha \le 1} \xi_{\alpha}(p,q)$ is the Chernoff bound.

$$\lim_{n\to\infty}p_{n,\min}^{err}=\exp[n\ln\xi(p,q)]$$

II. Asymmetric Hypothesis Testing

Finding optimal inference strategy for which $P_n(p|q)$ (and the type-II error) is minimal, while simultaneously assuring that $P_n(q|p) \le \epsilon$ for some $0 < \epsilon < 1$. For the probability of II-type error we get

$$\lim_{n\to\infty} P_{n,min}(p|q) = \exp[-nKL(p,q) + o(n)],$$

according to the Stein's lemma.

< ロト < 同ト < ヨト < ヨト

The statistical manifold

Consider a familiy \mathcal{M} of probability distributions on X and suppose each element of \mathcal{M} , a PD, may be parametrized using n real-valued variables: $\theta = (\theta_1, \ldots, \theta_n)$, i.e.

$$\mathcal{M} = \{ p_{\theta} = p(x; \theta) : \theta = (\theta_1, \dots, \theta_n) \in \Theta \},\$$

where $\Theta \subset \mathbb{R}^n$ is open and the mapping $\theta \mapsto p_{\theta}$ is injective. *S* is called an *n*-dimensional statistical (parametrical) model or manifold. θ_i 's are called **coordinates** and **the tangent space** associated with a given point $p \in \mathcal{M}$ is denoted by $\mathcal{T}_p \mathcal{M}$.

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Examples

O Normal distributions

$$p(x;\theta) = \frac{1}{\sqrt{2\pi}\sigma} \exp\{-\frac{(x-m)^2}{2\sigma^2}\}$$

$$X = \mathbb{R}, \ n = 2, \ \theta = (m, \sigma), \\ \Theta = \{(m, \sigma) : -\infty < m < \infty, 0 < \sigma < \infty\}$$

2 $\mathcal{P}(X)$ for finite *X*

$$p(x_i; \theta) = \begin{cases} \theta_i & \text{if } 1 \le i \le n\\ 1 - \sum_{i=1}^n \theta_i & \text{if } i = 0 \end{cases}$$
$$X = (x_0, x_1, \dots, x_n), \ \Theta = \{(\theta_1, \dots, \theta_n) : (\forall i : \theta_i > 0), \sum_{i=1}^n \theta_i < 1\}$$

3

イロト イヨト イヨト イヨト

A Riemannian metric on a statistical manifold ${\mathcal M}$ is defined as a smooth mapping

$$\mathfrak{g}_{p}:\mathcal{T}_{p}\mathcal{M} imes\mathcal{T}_{p}\mathcal{M} o\mathbb{R}^{+}$$

where $p \in \mathcal{M}$ is a PD and it defines an inner products $\langle ., . \rangle_{\mathfrak{g}_p} \geq 0$ for vectors contained in the *tangent space* $\mathcal{T}_p\mathcal{M}$. If $(e_i)_i$ is an ON basis in $\mathcal{T}_p\mathcal{M}$ then with the matrix $g_{ij}(p) = \langle e_i, e_j \rangle_{\mathfrak{g}_p}$, for all $u, v \in \mathcal{T}_p\mathcal{M}$ we have

$$\mathfrak{g}_{p}(u,v) \equiv \langle u,v \rangle_{\mathfrak{g}_{p}} = \sum_{i,j} g_{ij}(p) u_{i}v_{j} = u^{\mathsf{T}}g(p)v.$$

For an arbitrary curve $\gamma^{(p,q)} : [a, b] \ni t \mapsto u \in \mathcal{M}$ connectig points $p = \gamma^{(p,q)}(a)$ and $q = \gamma^{(p,q)}(b)$ in \mathcal{M} , the tangent vectors along the curve read

$$\dot{\gamma}(t) := rac{d\gamma^{(p,q)}}{dt}|_u = \sum_i \dot{\gamma}_i e_i.$$

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

The lenght of the curve is defined as

$$|\gamma^{(p,q)}| = \int_a^b \sqrt{\sum_{i,j} g_{ij} \dot{\gamma}_i \dot{\gamma}_j} dt,$$

and the squared infinitesimal segment of length along the curve is

$$d\ell^2 = \sum_{i,j} g_{ij} \dot{\gamma}_i \dot{\gamma}_j dt = \langle \dot{\gamma}(t), \dot{\gamma}(t)
angle_{\mathfrak{g}} dt.$$

3

イロト イポト イヨト イヨト

Divergence-Induced metrics

Consider a divergence D(p, q) which is smooth in its both arguments $p, q \in \mathcal{M}$. For some orthonormal basis $(e_i)_i$ in $\mathcal{T}_p\mathcal{M}$ we define a matrix

$$g_D(p)_{ij} := \langle e_i, e_j \rangle_{\mathfrak{g}_D(p)} = -\frac{\partial^2}{\partial t \partial s} D(p + t e_i, p + s e_j)|_{t=s=0},$$

then D defines an inner product, and hence a metric $\mathfrak{g}_D(p)$ for any $u, v \in \mathcal{T}_p \mathcal{M}$ at $p \in \mathcal{M}$ as

$$\mathfrak{g}_D(p)(u,v) = \langle u,v \rangle_{\mathfrak{g}_D(p)} = v^T g_D(p) u.$$

< ロト < 同ト < ヨト < ヨト

We can give the Taylor expansion for D, when perturbing by $\delta p \in \mathcal{T}_p \mathcal{M}$ a given $p \in \mathcal{M}$ onto $p + \delta p \in \mathcal{M}$ s.t. $\operatorname{supp} (p + \delta p) \subseteq \operatorname{supp} (p)$ as

$$D(\boldsymbol{p},\boldsymbol{p}+\delta\boldsymbol{p})=\frac{1}{2}\mathfrak{g}_D(\boldsymbol{p})(\delta\boldsymbol{p},\delta\boldsymbol{p})+\mathrm{O}(\delta\boldsymbol{p}^3)=\frac{1}{2}\delta\boldsymbol{p}^T\boldsymbol{g}_D(\boldsymbol{p})\delta\boldsymbol{p}+\mathrm{O}(\delta\boldsymbol{p}^3),$$

since the less degree terms of δp absent as D(p, p) = 0 to be a global minimum.

A numerical function f defined on pairs of probability distributions is **monotone** if

$$f(S(p), S(q)) \leq f(p, q),$$

for all stochastic map S and for all PDs p, q.

イロト 不得 トイヨト イヨト 二日

Monotone divergence induce monotone metric

A metric is **monotone metric** if its geodesic distance is a monotone function. For a stochastic map S let p' = S(p) and $\delta p' = S(\delta p)$. The monotonicity of the divergence D implies

$$D(p, p' + \delta p') \leq D(p, p + \delta p),$$

which is equivalent with

$$g_D(p) \geq S^T g_D(S(p))S$$
 up to $O(\delta p^3)$.

イロト イヨト イヨト

The Fisher Information Matrix

Motivation

We seek a quantitative measure of the extent that two distributions $p(x; \theta)$ and $p(x; \theta + d\theta)$ can be distinguished. Consider the relative difference

$$\Delta = \frac{p(x; \theta + d\theta) - p(x; \theta)}{p(x; \theta)} = \sum_{i} \frac{\frac{\partial p(x; \theta)}{\partial \theta_{i}} d\theta_{i}}{p(x; \theta)} = \sum_{i} \frac{\partial \log p(x; \theta)}{\partial \theta_{i}} d\theta_{i}$$

The expected value

$$\langle \Delta \rangle = \mathbb{E}_{p}\Delta = \int dx p(x;\theta) \sum_{i} \frac{\partial \log p(x;\theta)}{\partial \theta_{i}} d\theta_{i} =$$

 $\sum_{i} d\theta_{i} \frac{\partial}{\partial \theta_{i}} \int dx p(x;\theta) = 0.$

イロト イポト イヨト イヨト

We consider the variance

$$\langle \Delta^2 \rangle = \mathbb{E}_p \Delta^2 = \int dx p(x;\theta) \sum_{i,j} \frac{\partial \log p(x;\theta)}{\partial \theta_i} \frac{\partial \log p(x;\theta)}{\partial \theta_j} d\theta_i d\theta_j$$

as a measure of the infinitesimal difference between the two distributions, so we could say $d\ell^2 = \mathbb{E}_p \Delta^2$ between the points θ and $\theta + d\theta$ on the manifold. It suggests introducing the matrix (g_{ij})

$$g_{ij}(\theta) = \int dx p(x;\theta) \frac{\partial \log p(x;\theta)}{\partial \theta_i} \frac{\partial \log p(x;\theta)}{\partial \theta_j} = \int dx \frac{1}{p(x;\theta)} \frac{\partial p(x;\theta)}{\partial \theta_i} \frac{\partial p(x;\theta)}{\partial \theta_j}$$

the Fisher information matrix and for the infinitesimal distance $d\ell$

$$d\ell^2 = \sum_{ij} g_{ij}(\theta) d\theta_i d\theta_j.$$

ヘロト 人間ト ヘヨト ヘヨト

Rao was the first to realize in 1945 that a statistical manifold (a family of densities) can be considered as a Riemannian manifold where Fisher information matrix plays the role of metrics.

Theorem (Chentsov)

Up to a constant factor the Fisher information matrix yields the only monotone family of Riemann metrics on the class of finite probability simplexes.

イロト イポト イヨト イヨト

The Fisher-Rao metric

We restrict ourself to the open probability simplex

$$\mathcal{P}_n = \{ p = (p_1, \ldots, p_n) : p_i > 0, \sum_i p_i = 1 \}.$$

The tangent space is given by

$$\mathcal{TP}_n = \{ u \in \mathbb{R}^n : \sum_i u_i = 0 \}.$$

Then the Fisher-Rao metric is given by

$$\mathfrak{g}_{p}(u,v) = \langle u,v \rangle_{\mathfrak{g}(p)} = \sum_{i} \frac{u_{i}v_{i}}{p_{i}},$$

for all tangent vector $u, v \in \mathcal{TP}_n$.

< ロト < 同ト < ヨト < ヨト

Fisher-Rao metric as induced metrics by f-divergences

For a sufficiently smooth convex function $f : \mathbb{R}^+ \to \mathbb{R}^+$, with f(1) = 0, for the monotone f-divergence $D_f(p,q) = \sum_i p_i f\left(\frac{p_i}{q_i}\right)$ the induced metric $\mathfrak{g}_{D_f}(p)$ at $p \in \mathcal{P}_n$ is given by

$$\mathfrak{g}_{D_f}(p)(u,v) = -rac{\partial^2}{\partial t \partial s} D_f(p+tu,p+sv)|_{t=s=0} = f''(1) \sum_i rac{u_i v_i}{p_i},$$

for all $u, v \in TP_n$, according to the Chentsov Theorem.

Notations

- $\bullet \ \mathcal{H}$ is a finite dimensional Hilbert space
- $\mathcal{B}(\mathcal{H})$ is the algebra of linear operators

•
$$\mathcal{B}(\mathcal{H})^+ = \{A \in \mathcal{B}(\mathcal{H}) : A \ge 0\}$$

- $\mathcal{B}(\mathcal{H})^{++} = \{A \in \mathcal{B}(\mathcal{H}) : A > 0\}$
- $S(H) = \{\rho \in B(H)^+, \operatorname{Tr} \rho = 1\}$ is the quantum state space and its element are called density matrices.
- The Hilbert-Schmidt inner product is

$$\langle A, B \rangle = \operatorname{Tr} A^* B, \quad A, B \in \mathcal{B}(\mathcal{H})$$

• The left and right multiplications of $A \in \mathcal{B}(\mathcal{H})$ are

$$L_A X = A X, \quad R_A X = X A, \quad X \in \mathcal{B}(\mathcal{H})$$

If $A, B \in \mathcal{B}(\mathcal{H})^+$, then L_A and L_B are positive operators on $\mathcal{B}(\mathcal{H})$ with $L_A R_B = R_B L_A$.

The quantum *f*-divergence of Petz

Definition

Assume that $f : (0, \infty) \to \mathbb{R}$ is an operator convex function. For $A, B \in \mathcal{B}(\mathcal{H})^{++}$ with spectral decomposition $A = \sum_{a \in \mathrm{Sp}(A)} aP_a$ and $B = \sum_{b \in \mathrm{Sp}(B)} bQ_b$, the (standard) *f*-divergence is

$$S_f(A,B) := \langle B^{1/2}, f(L_A R_{B^{-1}}) B^{1/2} \rangle = \operatorname{Tr} B^{1/2} f(L_A R_{B^{-1}}) (B^{1/2}),$$

with

$$f(L_A R_{B^{-1}}) = \sum_{a \in \operatorname{Sp}(A)} \sum_{b \in \operatorname{Sp}(B)} f(ab^{-1}) L_{P_a} R_{Q_b},$$

which can be extended to general $A,B\in \mathcal{B}(\mathcal{H})^+$ as

$$S_f(A,B) := \lim_{\varepsilon \searrow 0} S_f(A + \varepsilon I, B + \varepsilon I).$$

ヘロト 不得下 イヨト イヨト

Properties of S_f

Joint convexity

For every $\rho_i, \sigma_i \in \mathcal{S}(\mathcal{H})$ and $\lambda_i \geq 0$, $\sum_i \lambda_i = 1$ we have

$$S_f(\sum_i \lambda_i \rho_i, \sum_i \lambda_i \sigma_i) \leq \sum_i \lambda_i S_f(\rho_i, \sigma_i).$$

Monotonicity

Assume that $\Phi : S(\mathcal{H}) \to S(\mathcal{H})$ is a completely positive trace-preserving (CPTP) map. Then for any density matrices ρ, σ the DPI holds, i.e.

$$S_f(\Phi(\rho), \Phi(\sigma)) \leq S_f(\rho, \sigma).$$

The maximal *f*-divergence of Matsumoto

It is natural to ensure the generalization of a divergence to be independent of the measurement choice. This, in particular, can be achieved by performing maximization over all POVM available, i.e.

$$D(\rho,\sigma) := \max_{\{\Pi_i\}_i} D(\rho,q),$$

such that $p_i = \operatorname{Tr}(\rho \Pi_i)$, $q_i = \operatorname{Tr}(\sigma \Pi_i)$, where $\Pi_i \ge 0$ and $\sum_i \Pi_i = I$.

ヘロト 人間 ト イヨト イヨト 二日

Definition

Assume that $f : (0, \infty) \to \mathbb{R}$ is an operator convex function. For $A, B \in \mathcal{B}(\mathcal{H})^{++}$ the maximal *f*-divergence is

$$S_f^{max}(A,B) := \operatorname{Tr} B^{1/2} f(B^{-1/2} A B^{-1/2}) B^{1/2},$$

which can be extended to general $A, B \in \mathcal{B}(\mathcal{H})^+$ as

$$S_f^{max}(A,B) := \lim_{\varepsilon \searrow 0} S_f(A + \varepsilon I, B + \varepsilon I).$$

イロト 不得下 イヨト イヨト

Properties of S_f^{max}

- S_f^{max} is jointly convex
- S_f^{max} is monotone under CPTP maps (DPI)
- S_f^{max} is maximal among monotone quantum f-divergences

$$S_f(A,B) \leq S_f^{max}(A,B), \quad A,B \in \mathcal{B}(\mathcal{H})^+.$$

Examples

3

イロト イポト イヨト イヨト

Petz's monotone metrics

• Denote D_n the invertible $n \times n$ density matrices. This is a differentiable manifold with tangent space at the footpoint ρ

$$\mathcal{T}_{\rho}\mathcal{D}_n \equiv \{A \in M_n^{sa} : \operatorname{Tr} A = 0\}$$

• Recall that a Riemannian metric \mathfrak{g}_{ρ} with footpoint ρ on \mathcal{D}_n is called monotone metric if

$$\mathfrak{g}_{\mathcal{T}(\rho)}(\mathcal{T}(A),\mathcal{T}(A)) \leq \mathfrak{g}_{\rho}(A,A)$$

for all TPCP map T and $A \in \mathcal{T}_{\rho}\mathcal{D}_{n}$.

ヘロト ヘ回ト ヘヨト ヘヨト

An operator monotone function $f : \mathbb{R}^+ \to \mathbb{R}^+$ is called **symmetric** if $f(x) = xf(x^{-1})$ and **normalized** if f(1) = 1. With each symmetric and normalized operator monotone function f we associate its **Morozova-Chentsov function** via

$$c_f(x,y) := rac{1}{yf(rac{x}{y})}, ext{ and conversely } f(x) = rac{1}{c_f(x,1)}.$$

There is a plethora of suitable f functions, for example

$$\frac{2x^{\alpha+1/2}}{1+x^{2\alpha}}, \quad \frac{x-1}{\log x}, \quad \frac{x-1}{\log x}\frac{2\sqrt{x}}{1+x}, \quad \frac{1+x}{2}, \dots$$

where $\alpha \in [0, 1/2]$.

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Petz's Theorem on characterisation of monotone metrics

Theorem

There exists a bijective correspondence between monoton metrics on \mathcal{D}_n and symmetric, normalized operator monotone functions f on $(0, \infty)$, given by

$$\mathfrak{g}^f_
ho(A,B)=\langle A,(f(L_
ho R_
ho^{-1})R_
ho)^{-1}B
angle=\mathrm{Tr}\,(Ac_f(L_
ho,R_
ho)(B)),$$

where $A, B \in \mathcal{T}_{\rho}\mathcal{D}_n$. At a point where ρ is diagonal, $\rho = \text{Diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$, the lenght square of any tangent vector A is

$$\mathfrak{g}^f_
ho(A,A) = \|A\|^2 = rac{1}{4} \left(f''(1) \sum_i rac{A_{ii}^2}{\lambda_i} + 2 \sum_{i < j} c_f(\lambda_i,\lambda_j) |A_{ij}|^2
ight)$$

ヘロト ヘ戸ト ヘヨト ヘヨト

Monotone metrics as induced metric by *f*-divergences

Theorem (Lesniewski-Ruskai)

Any monotone metric is obtained from standard f-divergence by derivation

$$\mathfrak{g}^{\mathfrak{f}}_{\rho}(A,B) = -rac{\partial^2}{\partial t \partial s} S_{\mathcal{F}}(
ho + tA,
ho + sB)|_{t=s=0},$$

where the relation of the function F to the function f is

$$\frac{1}{f(x)} = \frac{F(x) + xF(x^{-1})}{(x-1)^2}$$

< ロト < 同ト < ヨト < ヨト

Metric adjusted skew informations

It is useful to decompose the tangent space

$$\mathcal{T}_{\rho}\mathcal{D}_{n} = \{A \in \mathcal{M}_{n} : A = A^{*}, \operatorname{Tr} A = 0\}$$

as the direct sum of a "commuting" and a "non-commuting" part w.r.t. $\rho.$ We set

$$(\mathcal{T}_{\rho}\mathcal{D}_{n})^{c} = \{A \in \mathcal{T}_{\rho}\mathcal{D}_{n} : [A, \rho] = 0\}$$

the commuting part and define $(\mathcal{T}_{\rho}\mathcal{D}_{n})^{o}$ as the orthogonal complement of $(\mathcal{T}_{\rho}\mathcal{D}_{n})^{c}$ w.r.t. the Hilbert-Schmidt inner product. Then

$$\mathcal{T}_{\rho}\mathcal{D}_{n} = (\mathcal{T}_{\rho}\mathcal{D}_{n})^{c} \oplus (\mathcal{T}_{\rho}\mathcal{D}_{n})^{o}.$$

Whenever $A \in (\mathcal{T}_{\rho}\mathcal{D}_n)^c$, we have $\mathfrak{g}_{\rho}^f(A, A) = \operatorname{Tr} \rho^{-1} A^2$.

A tipical element of $(\mathcal{T}_{\rho}\mathcal{D}_n)^o$ is $i[\rho, K]$, $(K \in M_n^{sa})$ and we can define the **metric adjusted skew information** by

$$I_{\rho}^{f}(K) = \frac{f(0)}{2} \mathfrak{g}_{\rho}^{f}(i[\rho, K], i[\rho, K]).$$

• With the choice $f(x) = \frac{(\sqrt{x}+1)^2}{4}$ we get the Wigner-Yanase information:

$$I_{\rho}^{f}(\mathcal{K}) = -\frac{1}{2} \operatorname{Tr} \left([\mathcal{K}, \sqrt{\rho}] \right)^{2} = \operatorname{Tr} \rho \mathcal{K}^{2} - \operatorname{Tr} \rho^{1/2} \mathcal{K} \rho^{1/2} \mathcal{K}.$$

• With the choice $f(x) = \frac{1+x}{2}$ we get the quantum Fisher information, with $\rho = \sum_k \lambda_k |k\rangle \langle k|$:

$$I_{\rho}^{f}(K) = F_{Q}[\rho, K] = 2\sum_{k,l} \frac{(\lambda_{k} - \lambda_{l})^{2}}{\lambda_{k} + \lambda_{l}} |\langle k|K|l \rangle|^{2}.$$

• For a general *f* we can write explicitly:

$$I_{\rho}^{f}(K) = \frac{f(0)}{2} \sum_{k,l} \frac{(\lambda_{k} - \lambda_{l})^{2}}{\lambda_{l} f(\lambda_{k}/\lambda_{l})} |\langle k|K|l\rangle|^{2}.$$

QOT via quantum channels

The approach of De Palma and Trevisan¹

• For any $\rho, \sigma \in S(\mathcal{H})$, the set $\mathcal{M}(\rho, \sigma)$ of quantum transport maps from ρ to σ is the set of the quantum channels (CPTP maps) such that

$$\Phi: \mathcal{T}_1(\mathrm{supp}\,(
ho)) o \mathcal{T}_1(\mathcal{H}), \quad \Phi(
ho) = \sigma.$$

• We can associate with any $\Phi \in \mathcal{M}(\rho, \sigma)$ the quantum state $\Pi_{\Phi} \in \mathcal{S}(\mathcal{H} \otimes \mathcal{H}^*)$ by

$$\Pi_{\Phi} = \left(\Phi \otimes \mathit{I}_{\mathcal{T}_{1}(\mathcal{H}^{*})} \right) \left(\left| \left| \sqrt{\rho} \right\rangle \right\rangle \left\langle \left\langle \sqrt{\rho} \right| \right| \right).$$

¹G. De Palma and D. Trevisan, *Quantum optimal transport with quantum channels*, Ann. Henri Poincaré **22** (2021), 3199–3234. Since

$$\operatorname{Tr}_{\mathcal{H}} \Pi_{\Phi} = \rho^{\mathcal{T}} \quad \text{ad} \quad \operatorname{Tr}_{\mathcal{H}^*} \Pi_{\Phi} = \sigma,$$

where X^T is the transpose map, i.e. $X^T \langle \phi | = \langle \phi | X$, it induce the following definition:

• The set of quantum couplings assosiated with $ho,\sigma\in\mathcal{S}(\mathcal{H})$ is

$$\mathcal{C}(\rho,\sigma) = \{ \Pi \in \mathcal{S}(\mathcal{H} \otimes \mathcal{H}^*) : \operatorname{Tr}_{\mathcal{H}} \Pi = \rho^{\mathcal{T}}, \operatorname{Tr}_{\mathcal{H}^*} \Pi = \sigma \}.$$

- De Palma and Trevisan showed that for any $\rho, \sigma \in S(\mathcal{H})$, the map $\Phi \mapsto \Pi_{\Phi}$ is a bijection between $\mathcal{M}(\rho, \sigma)$ and $\mathcal{C}(\rho, \sigma)$, that is in striking contrast to the classical case, the quantum couplings are in one-to-one correspondance with the quantum transport maps.
- Why? The primary reason: quantum channels **can "split mass"**, i.e. they can send pure states to mixed states.

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

• The cost operator for fixed self-adjoint operators $\{A_i\}_{i=1}^N$:

$$C = \sum_{j=1}^{N} \left(A_j \otimes I_{\mathcal{H}^*} - I_{\mathcal{H}} \otimes A_j^T \right)^2$$

• The transport cost for a coupling Π is

$$C(\Pi) = \operatorname{Tr}_{\mathcal{H}\otimes\mathcal{H}^*}\Pi C$$

 The quantum Wasserstein (pseudo-)distance D_C(ρ, σ) is defined by

$$D^2_{\mathcal{C}}(
ho,\sigma) = \inf_{\Pi \in \mathcal{C}(
ho,\sigma)} \mathcal{C}(\Pi)$$

イロト 不得下 イヨト イヨト

Some strange properties

•
$$D_C(\rho,\sigma) = D_C(\sigma,\rho) \sqrt{2}$$

• If $\rho = \sigma$ then the optimal transport map corresponds to the identity map $\Phi = I$, so $D_C(\rho, \rho)^2 = C\left(\left|\left|\sqrt{\rho}\right\rangle\right\rangle \left\langle\left\langle\sqrt{\rho}\right|\right|\right)$ and

$$D_{C}(\rho,\rho)^{2} = -\sum_{i=1}^{N} \operatorname{Tr} \left([A_{i},\sqrt{\rho}]^{2} \right)$$
$$= 2\sum_{i=1}^{M} \left(\operatorname{Tr} \left(\rho A_{i}^{2} \right) - \operatorname{Tr} \left(\sqrt{\rho} A_{i} \sqrt{\rho} A_{i} \right) \right),$$

which is the famous the Wigner - Yanase information!

• For any $\rho, \tau, \sigma \in \mathcal{S}(\mathcal{H})$ the modified triangle inequality holds:

$$D_{\mathcal{C}}(\rho,\sigma) \leq D_{\mathcal{C}}(\rho,\tau) + D_{\mathcal{C}}(\tau,\tau) + D_{\mathcal{C}}(\tau,\sigma).$$

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Our contribution²

A bipartite quantum state is separable if it can be given as

$$\sum_{k} p_{k} |\Psi_{k}\rangle \langle \Psi_{k}| \otimes |\Phi_{k}\rangle \langle \Phi_{k}|,$$

with $\sum_{k} p_{k} = 1$. If a state cannot be written in this form, then it is called **entangled**. We denote the convex set of separable states by S_{sep} . We define the modified **quantum Wasserstein (pseudo-)distance** by

$$D_{sep}^{2}(\rho,\sigma) = \inf_{\Pi} C(\Pi) = \inf_{\Pi} \sum_{j=1}^{N} \operatorname{Tr} \left(A_{j} \otimes I_{\mathcal{H}^{*}} - I_{\mathcal{H}} \otimes A_{j}^{\mathsf{T}} \right)^{2} \Pi,$$

where $\Pi \in \mathcal{C}(\rho, \sigma) \cap \mathcal{S}_{sep}$ are the separable couplings of the marginals ρ and σ .

²Géza Tóth, J.P.*Quantum Wasserstein distance based on an optimization over separable states*, Quantum 7 (2023), 1143

József Pitrik

- For two qubits, it is computable numerically with semidefinite programming.
- In general,

$$D_{sep}(\rho, \sigma) \ge D(\rho, \sigma).$$

If the relation

$$D_{sep}(
ho,\sigma) > D(
ho,\sigma)$$

holds, then all optimal Π for $D(\rho, \sigma)$ is entangled.

3

イロト イポト イヨト イヨト

Let us consider the distance between two single-qubit mixed states

$$\rho = \frac{1}{2} |1\rangle \langle 1| + \frac{1}{4}I,$$

and

$$\sigma_{\phi} = e^{-i\frac{\sigma_{y}}{2}\phi}\rho^{+i\frac{\sigma_{y}}{2}\phi},$$

Thus, an entangled Π can be cheaper than a separable one.

József Pitrik

On Geometry of Quantum State Space

The modified self-distance

• For the self-distance in the modified case for N = 1 we get

$$D_{sep}(\rho,\rho)^2 = rac{1}{4}F_Q[
ho,A],$$

where

$$F_Q[\rho, A] = 2\sum_{k,l} \frac{(\lambda_k - \lambda_l)^2}{\lambda_k + \lambda_l} |\langle k|A|l\rangle|^2,$$

the quantum Fisher information of the state $\rho = \sum_k \lambda_k |k\rangle \langle k|$ w.r.t the selfadjoint operator A.

Note that

$$I_{
ho}(\mathcal{A}) \leq rac{1}{4}F_Q[
ho,\mathcal{A}] \leq (\Delta\mathcal{A})_{
ho}^2,$$

where $I_{\rho}(A)$ is the Wigner-Yanase information and $(\Delta A)_{\rho}^2$ is the variance.

József Pitrik

- For the quantum Wasserstein distance, we restrict the optimization to separable states.
- Then, the self-distance is the quarter of the quantum Fisher information.
- We found a fundamental connection from quantum optimal transport to quantum entanglement theory and quantum metrology.

Thank you for your kind attention!

ヘロト ヘ回ト ヘヨト ヘヨト