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Classical State Space Measures of Dissimilarity

Measures of Dissimilarity

Denote P(X ) the space of probability measures on X = Rn. A function D
is called a divergence if

D : P(X )× P(X )→ R, D(p, q) ≥ 0 with D(p, q) = 0 iff p = q.

A divergence D is

1 symmetric if D(p, q) = D(q, p) for all p, q ∈ P(X ).

2 fulfills the triangle inequality if D(p, q) + D(q, r) ≥ D(p, r) for all
p, q, r ∈ P(X ).

3 monotone or fulfills the Data Processing Inequalities (DPI) if

D(S(p), S(q)) ≤ D(p, q),

for any stochastic map (Markov Kernel) S : P(X )→ P(X ).
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Classical State Space Measures of Dissimilarity

Remarks:
If we consider discrete probability distributions i.e.
p = (p1, p2, . . . , pn)T , with (∀i : pi ≥ 0),

∑n
i=1 pi = 1, then any

stochastic map S is given by a left-stochastic transition matrix (Sij),
i.e. (∀i , j : Sij ≥ 0) and (∀j :

∑
i Sij = 1).

We can interpret columns of a transition matrix as vectors of a
conditional probability: S.j = p(.|j), which effectly randomizes the
input probability vectors.
If for a divergence D the conditions (1) and (2) hold then it is called a
distance.

For simplicity, we primarily consider discrete probability distributions.
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Classical State Space f -Divergences

f -Divergences (Imre Csiszár, 1967)

For any given convex function f : R+ → R+ such that f (1) = 0, an
f -divergence is defined as

Df (p, q) =
∑

i

pi f
(

qi

pi

)
.

Some properties
For f ∗(x) = xf (x−1) we have Df (p, q) = Df ∗(q, p) so Df is
symmetric if f ∗ = f .
The convexity of f ensures that Df is monotone (fulfills the DPI).
Of course, not every monotone divergence constitutes an f -divergence:
for any non-decreasing g : R+ → R+ with g(0) = 0, g(Df (., .)) gives
a monotone divergence, which is not an f -divergence.

József Pitrik On Geometry of Quantum State Space 5 / 44



Classical State Space f -Divergences

Csiszár’s characterisation

Theorem Assume that a number C (p, q) ∈ R is associated to probability
distributions on the same set X for all finite set X . If

1 C (p, q) is invariant under the permutations of the basic set X , and
2 if A is a partition of X and pA(A) :=

∑
x∈A p(x), then

C (pA, qA) ≤ C (p, q) with equality iff pA(A)q(x) = qA(A)p(x)
whenever x ∈ A ∈ A,

then there exists a convex function f : R+ → R which is continous at 0
and C (p, q) = Df (p, q) for every p, q.
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Classical State Space f -Divergences

Some examples for f -divergences

For f (x) = 1
2 |1− x | the f -divergence is

T (p, q) =
1
2

∑
i

|pi − qi | the Total Variation (TV) distance.

For f (x) = 1−xα

1−α , 0 ≤ α < 1 the f -divergences are

Hα(p, q) =
1

1− α

(
1−

∑
i

pαi q1−α
i

)
=

1
1− α

(1− ξα(p, q))

the Hellinger divergences parametrized by α. Here
ξα(p, q) =

∑
i p

α
i q1−α

i are called Chernoff coefficients.
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Classical State Space f -Divergences

The α = 1/2 case is crucial:

H1/2(p, q) = 2(1−
∑

i

√
piqi ) = 2(1− F (p, q))

squared Hellinger distance, where F (p, q) = ξ1/2(p, q) =
∑

i
√

piqi is
the Bhattacharyya coefficient.

For f (x) = − log x we get for the f -divergence

KL(p, q) =
∑

i

pi log
pi

qi

the Kullback-Leibler divergence or relative entropy.
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Classical State Space f -Divergences

Example: Hypothesis Testing Tasks

Objective: correctly identify, based on the outcomes xn = (x1, . . . , xn) of n
independent rounds, which of given PDs p and q is the one governing the
experiment (the r. v. X ∼ p or q )
Decision function: D : X n → {0, 1}, s.t
if D(xn) = 0 ⇒ one concludes p to be correct PD
if D(xn) = 1 ⇒ one concludes q to be correct PD
Hypothesis Testing:
H0: “p is the true PD”
H1: “q is the true PD”
Types of errors:
type-I errors (“false positive”): H0 is rejected based on the data despite
actually holding true ⇒ Pn(q|p)
type-II errors (“false negative”): H0 is maintained although the data has
actually been generated in accordance with H1 ⇒ Pn(p|q)
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Classical State Space f -Divergences

I. Symmetric Hypothesis Testing
The goal is minimising the average error probability

perr
n := πpPn(q|p) + πqPn(p|q),

where πp and πq are the a priori probabilities of p and q resp.
(πp + πq = 1)

1 Single-shot scenario (n = 1)

perr
min =

1
2

(1− T (p, q))

2 Asymptotic scenario (n→∞)

perr
n,min ≤ ξ(p, q)n,

where ξ(p, q) := min0≤α≤1 ξα(p, q) is the Chernoff bound.

lim
n→∞

perr
n,min = exp[n ln ξ(p, q)]
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Classical State Space f -Divergences

II. Asymmetric Hypothesis Testing
Finding optimal inference strategy for which Pn(p|q) (and the type-II error)
is minimal, while simultaneously assuring that Pn(q|p) ≤ ε for some
0 < ε < 1. For the probability of II-type error we get

lim
n→∞

Pn,min(p|q) = exp[−nKL(p, q) + o(n)],

according to the Stein’s lemma.
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Classical State Space The Riemannian structure of statistical manifolds

The statistical manifold

Consider a familiyM of probability distributions on X and suppose each
element ofM, a PD, may be parametrized using n real-valued variables:
θ = (θ1, . . . , θn), i.e.

M = {pθ = p(x ; θ) : θ = (θ1, . . . , θn) ∈ Θ},

where Θ ⊂ Rn is open and the mapping θ 7→ pθ is injective. S is called an
n-dimensional statistical (parametrical) model or manifold. θi ’s are
called coordinates and the tangent space associated with a given point
p ∈M is denoted by TpM.
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Classical State Space The Riemannian structure of statistical manifolds

Examples
1 Normal distributions

p(x ; θ) =
1√
2πσ

exp{−(x −m)2

2σ2 }

X = R, n = 2, θ = (m, σ),
Θ = {(m, σ) : −∞ < m <∞, 0 < σ <∞}

2 P(X ) for finite X

p(xi ; θ) =

{
θi if 1 ≤ i ≤ n
1−

∑n
i=1 θi if i = 0

X = (x0, x1, . . . , xn), Θ = {(θ1, . . . , θn) : (∀i : θi > 0),
∑n

i=1 θi < 1}
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Classical State Space The Riemannian structure of statistical manifolds

A Riemannian metric on a statistical manifoldM is defined as a smooth
mapping

gp : TpM×TpM→ R+

where p ∈M is a PD and it defines an inner products 〈., .〉gp ≥ 0 for
vectors contained in the tangent space TpM. If (ei )i is an ON basis in
TpM then with the matrix gij(p) = 〈ei , ej〉gp , for all u, v ∈ TpM we have

gp(u, v) ≡ 〈u, v〉gp =
∑
i ,j

gij(p)uivj = uTg(p)v .

For an arbitrary curve γ(p,q) : [a, b] 3 t 7→ u ∈M connectig points
p = γ(p,q)(a) and q = γ(p,q)(b) inM , the tangent vectors along the curve
read

γ̇(t) :=
dγ(p,q)

dt
|u =

∑
i

γ̇iei .
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Classical State Space The Riemannian structure of statistical manifolds

The lenght of the curve is defined as

|γ(p,q)| =

∫ b

a

√∑
i ,j

gij γ̇i γ̇jdt,

and the squared infinitesimal segment of length along the curve is

d`2 =
∑
i ,j

gij γ̇i γ̇jdt = 〈γ̇(t), γ̇(t)〉gdt.
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Classical State Space The Riemannian structure of statistical manifolds

Divergence-Induced metrics

Consider a divergence D(p, q) which is smooth in its both arguments
p, q ∈M. For some orthonormal basis (ei )i in TpM we define a matrix

gD(p)ij := 〈ei , ej〉gD(p) = − ∂2

∂t∂s
D(p + tei , p + sej)|t=s=0,

then D defines an inner product, and hence a metric gD(p) for any
u, v ∈ TpM at p ∈M as

gD(p)(u, v) = 〈u, v〉gD(p) = vTgD(p)u.
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Classical State Space The Riemannian structure of statistical manifolds

We can give the Taylor expansion for D, when perturbing by δp ∈ TpM a
given p ∈M onto p + δp ∈M s.t. supp (p + δp) ⊆ supp (p) as

D(p, p + δp) =
1
2
gD(p)(δp, δp) + O(δp3) =

1
2
δpTgD(p)δp + O(δp3),

since the less degree terms of δp absent as D(p, p) = 0 to be a global
minimum.
A numerical function f defined on pairs of probability distributions is
monotone if

f (S(p), S(q)) ≤ f (p, q),

for all stochastic map S and for all PDs p, q.

József Pitrik On Geometry of Quantum State Space 17 / 44



Classical State Space The Riemannian structure of statistical manifolds

Monotone divergence induce monotone metric

A metric is monotone metric if its geodesic distance is a monotone
function. For a stochastic map S let p′ = S(p) and δp′ = S(δp). The
monotonicity of the divergence D implies

D(p , p′ + δp′) ≤ D(p, p + δp),

which is equivalent with

gD(p) ≥ STgD(S(p))S up to O(δp3).
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Classical State Space The Riemannian structure of statistical manifolds

The Fisher Information Matrix

Motivation
We seek a quantitative measure of the extent that two distributions p(x ; θ)
and p(x ; θ + dθ) can be distinguished. Consider the relative difference

∆ =
p(x ; θ + dθ)− p(x ; θ)

p(x ; θ)
=
∑

i

∂p(x ;θ)
∂θi

dθi
p(x ; θ)

=
∑

i

∂ log p(x ; θ)

∂θi
dθi

The expected value

〈∆〉 = Ep∆ =

∫
dxp(x ; θ)

∑
i

∂ log p(x ; θ)

∂θi
dθi =

∑
i

dθi
∂

∂θi

∫
dxp(x ; θ) = 0.
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Classical State Space The Riemannian structure of statistical manifolds

We consider the variance

〈∆2〉 = Ep∆2 =

∫
dxp(x ; θ)

∑
i ,j

∂ log p(x ; θ)

∂θi

∂ log p(x ; θ)

∂θj
dθidθj

as a measure of the infinitesimal difference between the two distributions,
so we could say d`2 = Ep∆2 between the points θ and θ + dθ on the
manifold. It suggests introducing the matrix (gij)

gij(θ) =

∫
dxp(x ; θ)

∂ log p(x ; θ)

∂θi

∂ log p(x ; θ)

∂θj
=

∫
dx

1
p(x ; θ)

∂p(x ; θ)

∂θi

∂p(x ; θ)

∂θj

the Fisher information matrix and for the infinitesimal distance d`

d`2 =
∑
ij

gij(θ)dθidθj .
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Classical State Space The Riemannian structure of statistical manifolds

Rao was the first to realize in 1945 that a statistical manifold (a family of
densities) can be considered as a Riemannian manifold where Fisher
information matrix plays the role of metrics.
Theorem (Chentsov)
Up to a constant factor the Fisher information matrix yields the only
monotone family of Riemann metrics on the class of finite probability
simplexes.
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Classical State Space The Riemannian structure of statistical manifolds

The Fisher-Rao metric

We restrict ourself to the open probability simplex

Pn = {p = (p1, . . . , pn) : pi > 0,
∑

i

pi = 1}.

The tangent space is given by

T Pn = {u ∈ Rn :
∑

i

ui = 0}.

Then the Fisher-Rao metric is given by

gp(u, v) = 〈u, v〉g(p) =
∑

i

uivi

pi
,

for all tangent vector u, v ∈ T Pn.
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Classical State Space The Riemannian structure of statistical manifolds

Fisher-Rao metric as induced metrics by f -divergences

For a sufficiently smooth convex function f : R+ → R+, with f (1) = 0, for
the monotone f -divergence Df (p, q) =

∑
i pi f

(
pi
qi

)
the induced metric

gDf (p) at p ∈ Pn is given by

gDf (p)(u, v) = − ∂2

∂t∂s
Df (p + tu, p + sv)|t=s=0 =

= f ′′(1)
∑

i

uivi

pi
,

for all u, v ∈ T Pn, according to the Chentsov Theorem.
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Quantum Counterparts The quantum f -divergences

Notations

H is a finite dimensional Hilbert space
B(H) is the algebra of linear operators
B(H)+ = {A ∈ B(H) : A ≥ 0}
B(H)++ = {A ∈ B(H) : A > 0}
S(H) = {ρ ∈ B(H)+,Tr ρ = 1} is the quantum state space and its
element are called density matrices.
The Hilbert-Schmidt inner product is

〈A,B〉 = Tr A∗B, A,B ∈ B(H)

The left and right multiplications of A ∈ B(H) are

LAX = AX , RAX = XA, X ∈ B(H)

If A,B ∈ B(H)+, then LA and LB are positive operators on B(H) with
LARB = RBLA.
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Quantum Counterparts The quantum f -divergences

The quantum f -divergence of Petz

Definition
Assume that f : (0,∞)→ R is an operator convex function. For
A,B ∈ B(H)++ with spectral decomposition A =

∑
a∈Sp(A) aPa and

B =
∑

b∈Sp(B) bQb, the (standard) f -divergence is

Sf (A,B) := 〈B1/2, f (LARB−1)B1/2〉 = Tr B1/2f (LARB−1)(B1/2),

with
f (LARB−1) =

∑
a∈Sp(A)

∑
b∈Sp(B)

f (ab−1)LPaRQb ,

which can be extended to general A,B ∈ B(H)+ as

Sf (A,B) := lim
ε↘0

Sf (A + εI ,B + εI ).
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Quantum Counterparts The quantum f -divergences

Properties of Sf

Joint convexity
For every ρi , σi ∈ S(H) and λi ≥ 0,

∑
i λi = 1 we have

Sf (
∑

i

λiρi ,
∑

i

λiσi ) ≤
∑

i

λiSf (ρi , σi ).

Monotonicity
Assume that Φ : S(H)→ S(H) is a completely positive
trace-preserving (CPTP) map. Then for any density matrices ρ, σ the
DPI holds, i.e.

Sf (Φ(ρ),Φ(σ)) ≤ Sf (ρ, σ).
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Quantum Counterparts The quantum f -divergences

The maximal f -divergence of Matsumoto

It is natural to ensure the generalization of a divergence to be independent
of the measurement choice. This, in particular, can be achieved by
performing maximization over all POVM available, i.e.

D(ρ, σ) := max
{Πi}i

D(p, q),

such that pi = Tr (ρΠi ), qi = Tr (σΠi ), where Πi ≥ 0 and
∑

i Πi = I .
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Quantum Counterparts The quantum f -divergences

Definition
Assume that f : (0,∞)→ R is an operator convex function. For
A,B ∈ B(H)++ the maximal f -divergence is

Smax
f (A,B) := Tr B1/2f (B−1/2AB−1/2)B1/2,

which can be extended to general A,B ∈ B(H)+ as

Smax
f (A,B) := lim

ε↘0
Sf (A + εI ,B + εI ).
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Quantum Counterparts The quantum f -divergences

Properties of Smax
f

Smax
f is jointly convex

Smax
f is monotone under CPTP maps (DPI)

Smax
f is maximal among monotone quantum f -divergences

Sf (A,B) ≤ Smax
f (A,B), A,B ∈ B(H)+.

Examples
1 Sx2(A,B) = Tr A2B−1 = Smax

x2 (A,B)

2 Sx log x(A,B) = Tr A(log A− log B) = S(A,B)

3 Smax
x log x = Tr A log(A1/2B−1A1/2) = SBS(A,B)

S(A,B) ≤ SBS(A,B)
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Quantum Counterparts Monotone metrics

Petz’s monotone metrics

Denote Dn the invertible n × n density matrices. This is a
differentiable manifold with tangent space at the footpoint ρ

TρDn ≡ {A ∈ Msa
n : Tr A = 0}

Recall that a Riemannian metric gρ with footpoint ρ on Dn is called
monotone metric if

gT (ρ)(T (A),T (A)) ≤ gρ(A,A)

for all TPCP map T and A ∈ TρDn.
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Quantum Counterparts Monotone metrics

An operator monotone function f : R+ → R+ is called symmetric if
f (x) = xf (x−1) and normalized if f (1) = 1. With each symmetric and
normalized operator monotone function f we associate its
Morozova-Chentsov function via

cf (x , y) :=
1

yf ( x
y )
, and conversely f (x) =

1
cf (x , 1)

.

There is a plethora of suitable f functions, for example

2xα+1/2

1 + x2α ,
x − 1
log x

,
x − 1
log x

2
√

x
1 + x

,
1 + x
2

, . . .

where α ∈ [0, 1/2].
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Quantum Counterparts Monotone metrics

Petz’s Theorem on characterisation of monotone metrics

Theorem
There exists a bijective correspondence between monoton metrics on Dn
and symmetric, normalized operator monotone functions f on (0,∞), given
by

gf
ρ(A,B) = 〈A, (f (LρR−1

ρ )Rρ)−1B〉 = Tr (Acf (Lρ,Rρ)(B)),

where A,B ∈ TρDn.
At a point where ρ is diagonal, ρ = Diag(λ1, λ2, . . . , λn), the lenght square
of any tangent vector A is

gf
ρ(A,A) = ‖A‖2 =

1
4

f ′′(1)
∑

i

A2
ii
λi

+ 2
∑
i<j

cf (λi , λj)|Aij |2
 .
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Quantum Counterparts Monotone metrics as induced metric by f -divergences

Monotone metrics as induced metric by f -divergences

Theorem (Lesniewski-Ruskai)
Any monotone metric is obtained from standard f -divergence by derivation

gfρ(A,B) = − ∂2

∂t∂s
SF (ρ+ tA, ρ+ sB)|t=s=0,

where the relation of the function F to the function f is

1
f (x)

=
F (x) + xF (x−1)

(x − 1)2 .
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Quantum Counterparts Metric adjusted skew informations

Metric adjusted skew informations

It is useful to decompose the tangent space

TρDn = {A ∈Mn : A = A∗,Tr A = 0}

as the direct sum of a “commuting” and a “non-commuting” part w.r.t. ρ.
We set

(TρDn)c = {A ∈ TρDn : [A, ρ] = 0}

the commuting part and define (TρDn)o as the orthogonal complement
of (TρDn)c w.r.t. the Hilbert-Schmidt inner product. Then

TρDn = (TρDn)c ⊕ (TρDn)o .

Whenever A ∈ (TρDn)c , we have gf
ρ(A,A) = Tr ρ−1A2.
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Quantum Counterparts Metric adjusted skew informations

A tipical element of (TρDn)o is i [ρ,K ], (K ∈ Msa
n ) and we can define the

metric adjusted skew information by

I f
ρ (K ) =

f (0)

2
gf
ρ(i [ρ,K ], i [ρ,K ]).

With the choice f (x) = (
√

x+1)2

4 we get the Wigner-Yanase
information:

I f
ρ (K ) = −1

2
Tr ([K ,

√
ρ])2 = Tr ρK 2 − Tr ρ1/2Kρ1/2K .

With the choice f (x) = 1+x
2 we get the quantum Fisher

information, with ρ =
∑

k λk |k〉〈k |:

I f
ρ (K ) = FQ [ρ,K ] = 2

∑
k,l

(λk − λl )
2

λk + λl
|〈k |K |l〉|2.

For a general f we can write explicitly:

I f
ρ (K ) =

f (0)

2

∑
k,l

(λk − λl )
2

λl f (λk/λl )
|〈k |K |l〉|2.
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Our contribution

QOT via quantum channels

The approach of De Palma and Trevisan1

For any ρ, σ ∈ S(H), the setM(ρ, σ) of quantum transport maps
from ρ to σ is the set of the quantum channels (CPTP maps) such
that

Φ : T1(supp (ρ))→ T1(H), Φ(ρ) = σ.

We can associate with any Φ ∈M(ρ, σ) the quantum state
ΠΦ ∈ S(H⊗H∗) by

ΠΦ =
(
Φ⊗ IT1(H∗)

)
(||√ρ〉〉 〈〈√ρ||) .

1G. De Palma and D. Trevisan, Quantum optimal transport with quantum channels,
Ann. Henri Poincaré 22 (2021), 3199–3234.
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Our contribution

Since
TrHΠΦ = ρT ad TrH∗ΠΦ = σ,

where XT is the transpose map, i.e. XT 〈φ| = 〈φ|X , it induce the
following definition:
The set of quantum couplings assosiated with ρ, σ ∈ S(H) is

C(ρ, σ) = {Π ∈ S(H⊗H∗) : TrHΠ = ρT ,TrH∗Π = σ}.

De Palma and Trevisan showed that for any ρ, σ ∈ S(H), the map
Φ 7→ ΠΦ is a bijection betweenM(ρ, σ) and C(ρ, σ), that is in
striking contrast to the classical case, the quantum couplings are in
one-to-one correspondance with the quantum transport maps.
Why? The primary reason: quantum channels can “split mass” , i.e.
they can send pure states to mixed states.
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Our contribution

The cost operator for fixed self-adjoint operators {Ai}Ni=1:

C =
N∑

j=1

(
Aj ⊗ IH∗ − IH ⊗ AT

j

)2

The transport cost for a coupling Π is

C (Π) = TrH⊗H∗ΠC

The quantum Wasserstein (pseudo-)distance DC (ρ, σ) is defined
by

D2
C (ρ, σ) = inf

Π∈C(ρ,σ)
C (Π)
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Our contribution

Some strange properties
DC (ρ, σ) = DC (σ, ρ)

√

If ρ = σ then the optimal transport map corresponds to the identity
map Φ = I , so DC (ρ, ρ)2 = C

(∣∣∣∣√ρ〉〉 〈〈√ρ∣∣∣∣) and
DC (ρ, ρ)2 = −

N∑
i=1

Tr
(
[Ai ,
√
ρ]2
)

= 2
M∑
i=1

(
Tr (ρA2

i )− Tr (
√
ρAi
√
ρAi )

)
,

which is the famous the Wigner – Yanase information!
For any ρ, τ, σ ∈ S(H) the modified triangle inequality holds:

DC (ρ, σ) ≤ DC (ρ, τ) + DC (τ, τ) + DC (τ, σ).
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Our contribution2

A bipartite quantum state is separable if it can be given as∑
k

pk |Ψk〉〈Ψk | ⊗ |Φk〉〈Φk |,

with
∑

k pk = 1. If a state cannot be written in this form, then it is called
entangled. We denote the convex set of separable states by Ssep. We
define the modified quantum Wasserstein (pseudo-)distance by

D2
sep (ρ, σ) = inf

Π
C (Π) = inf

Π

N∑
j=1

Tr
(
Aj ⊗ IH∗ − IH ⊗ AT

j

)2
Π,

where Π ∈ C (ρ, σ) ∩ Ssep are the separable couplings of the marginals ρ
and σ.

2Géza Tóth, J.P.Quantum Wasserstein distance based on an optimization over
separable states, Quantum 7 (2023), 1143
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For two qubits, it is computable numerically with semidefinite
programming.
In general,

Dsep(ρ, σ) ≥ D(ρ, σ).

If the relation
Dsep(ρ, σ) > D(ρ, σ)

holds, then all optimal Π for D(ρ, σ) is entangled.
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Let us consider the distance between two single-qubit mixed states

ρ =
1
2
|1〉〈1|+ 1

4
I ,

and
σφ = e−i σy

2 φρ+i σy
2 φ,

for N = 1 and A1 = σz .

Thus, an entangled Π can be cheaper than a separable one.
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The modified self-distance

For the self-distance in the modified case for N = 1 we get

Dsep(ρ, ρ)2 =
1
4
FQ [ρ,A],

where

FQ [ρ,A] = 2
∑
k,l

(λk − λl )
2

λk + λl
|〈k |A|l〉|2,

the quantum Fisher information of the state ρ =
∑

k λk |k〉〈k | w.r.t
the selfadjoint operator A.
Note that

Iρ(A) ≤ 1
4
FQ [ρ,A] ≤ (∆A)2

ρ,

where Iρ(A) is the Wigner-Yanase information and (∆A)2
ρ is the

variance.
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Summary

For the quantum Wasserstein distance, we restrict the optimization to
separable states.
Then, the self-distance is the quarter of the quantum Fisher
information.
We found a fundamental connection from quantum optimal transport
to quantum entanglement theory and quantum metrology.

Thank you for your kind attention!
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