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TG
Measures of Dissimilarity

Denote P(X) the space of probability measures on X = R". A function D
is called a divergence if

D:P(X)xP(X)—=R, D(p,qg)>0with D(p,q) =0 iff p=gq.
A divergence D is

@ symmetric if D(p, q) = D(q, p) for all p, g € P(X).

@ fulfills the triangle inequality if D(p, q) + D(q,r) > D(p, r) for all
p,q,r € P(X).

© monotone or fulfills the Data Processing Inequalities (DPI) if
D(S(p). S(q)) < D(p, q),
for any stochastic map (Markov Kernel) S : P(X) — P(X).
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[GEESIEIRSEYNCEIM  Measures of Dissimilarity

Remarks:

@ If we consider discrete probability distributions i.e.
p=(p1,p2,...,pn)", with (Vi:p; >0), Y7, pi =1, then any
stochastic map S is given by a left-stochastic transition matrix (Sj;),
ie. (Vi,j:S;>0)and (Vj:);S;=1).

@ We can interpret columns of a transition matrix as vectors of a
conditional probability: S; = p(.|j), which effectly randomizes the
input probability vectors.

o If for a divergence D the conditions (1) and (2) hold then it is called a
distance.

For simplicity, we primarily consider discrete probability distributions.
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f-Divergences
f-Divergences (Imre Csiszar, 1967)

For any given convex function f : R — R™ such that (1) =0, an
f-divergence is defined as

Dr(p, q) = Z:Pif (Z;) :

Some properties

e For f*(x) = xf(x~') we have D¢(p, q) = Ds«(q,p) so Dy is
symmetric if f* = f.

@ The convexity of f ensures that Dy is monotone (fulfills the DPI).

@ Of course, not every monotone divergence constitutes an f-divergence:
for any non-decreasing g : R™ — R™ with g(0) =0, g(Ds(.,.)) gives
a monotone divergence, which is not an f-divergence.

Jézsef Pitrik On Geometry of Quantum State Space 5/44



[GEESIEIRS EYWSEICM  f-Divergences

Csiszar's characterisation

Theorem Assume that a number C(p, q) € R is associated to probability
distributions on the same set X for all finite set X. If
@ C(p, q) is invariant under the permutations of the basic set X, and
© if Ais a partition of X and pa(A) := > .4 p(x), then

C(pa,qa) < C(p, q) with equality iff p4(A)q(x) = qa(A)p(x)
whenever x € A € A,

then there exists a convex function f : RT — R which is continous at 0
and C(p, q) = Dr(p, q) for every p,q.
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[GEESIEIRS EYWSEICM  f-Divergences

Some examples for f-divergences

o For f(x) = |1 — x| the f-divergence is

1
3 Z |pi — gi| the Total Variation (TV) distance.

e For f(x) = 11:X:, 0 < a < 1 the f-divergences are

Hu(p, q) = ( Zpa - a) = i (1—&a(p; q))

the Hellinger divergences parametrized by a. Here
&alp,g) =>; pf‘q,1 * are called Chernoff coefficients.
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[GEESIEIRS EYWSEICM  f-Divergences

The a = 1/2 case is crucial:

Hi2(p,q) = 2(1 - Z VPiai) = 2(1 - F(p,q))

squared Hellinger distance, where F(p,q) = &1/2(p,q) = >, /Pidi is
the Bhattacharyya coefficient.

@ For f(x) = — log x we get for the f-divergence
p7 q) Z Pi IOg .

the Kullback-Leibler divergence or relative entropy.
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(LSS
Example: Hypothesis Testing Tasks

Objective: correctly identify, based on the outcomes x" = (x1,...,x,) of n
independent rounds, which of given PDs p and q is the one governing the
experiment (ther.v. X ~ por q)

Decision function: D : X" — {0,1}, s.t

if D(xn) = 0 = one concludes p to be correct PD

if D(xn) =1 = one concludes g to be correct PD

Hypothesis Testing:

Ho: “p is the true PD"

Hi: “q is the true PD"

Types of errors:

type-1 errors (“false positive”): Hp is rejected based on the data despite
actually holding true = P,(q|p)

type-1l errors (“false negative”): Hp is maintained although the data has
actually been generated in accordance with H; = P,(p|q)
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[GEESIEIRS EYWSEICM  f-Divergences

I. Symmetric Hypothesis Testing
The goal is minimising the average error probability

pn" = mpPn(qlp) + mqPn(plq)
where 7, and 74 are the a priori probabilities of p and g resp.
(mp +7q = 1)
@ Single-shot scenario (n =1)

err

o= 21 T(p.q))

@ Asymptotic scenario (n — o0)

Prmin < §(p,q)",

where £(p, q) := ming<a<1&a(p, q) is the Chernoff bound.

err

lim pn,min = exp[n In é(pa q)]
n—o0
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[GEESIEIRS EYWSEICM  f-Divergences

Il. Asymmetric Hypothesis Testing

Finding optimal inference strategy for which P,(p|q) (and the type-II error)
is minimal, while simultaneously assuring that P,(q|p) < € for some

0 < € < 1. For the probability of lI-type error we get

lim Pn min(p|q) = exp[—nKL(p, q) + o(n)],
n—o0

according to the Stein’s lemma.
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[GEEIEIRSEYMEICM The Riemannian structure of statistical manifolds

The statistical manifold

Consider a familiy M of probability distributions on X and suppose each
element of M, a PD, may be parametrized using n real-valued variables:
0= (91, ceey 0,,), i.e.

M= {pg=p(x;0):0=(64,...,0,) € O},

where © C R"” is open and the mapping 6 — py is injective. S is called an
n-dimensional statistical (parametrical) model or manifold. 6;'s are
called coordinates and the tangent space associated with a given point
p € M is denoted by T, M.
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[GEEIEIRSEYMEICM The Riemannian structure of statistical manifolds

Examples

@ Normal distributions
(x — m)>?

plxif) = —— exp{—" 7}

X=R, n=2 0= (m,o),
©={(mo):—co<m<00,0<0 < o0}

@ P(X) for finite X

0; if1<i<n
P(Xi;e): n o
1->,6; ifi=0

X = (X(),Xl,...,Xn), © = {(91,...,9,7) : (Vi 1 0; >0),Zl’-1:19,' < 1}
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[GEEIEIRSEYMEICM The Riemannian structure of statistical manifolds

A Riemannian metric on a statistical manifold M is defined as a smooth
mapping
p i TpM X ToM — R

where p € M is a PD and it defines an inner products (.,.)q, > 0 for
vectors contained in the tangent space T,M. If (e;); is an ON basis in
TpM then with the matrix gj;(p) = (e, €)g,, for all u,v € T,M we have

0, ) = (0.0, = X (o) = )

For an arbitrary curve ~(P:9) [a, b] © t — u € M connectig points
p =~P9(a) and g = 4(P9(b) in M , the tangent vectors along the curve

read (0:d)
Lo dyP e -
V(t) = T’u = ZI:'YIe/-
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[GEEIEIRSEYMEICM The Riemannian structure of statistical manifolds

The lenght of the curve is defined as
b
a i

and the squared infinitesimal segment of length along the curve is

4 = 3" gt = (3().4(2)) gt

i

Jézsef Pitrik On Geometry of Quantum State Space 15 /44



[GEEIEIRSEYMEICM The Riemannian structure of statistical manifolds

Divergence-Induced metrics

Consider a divergence D(p, g) which is smooth in its both arguments
p,q € M. For some orthonormal basis (e;); in 7,M we define a matrix

2
gD(P)ij = <e,-, ej>gD(p) = _mD(p"_ tej, p+ sej)|t=S=07

then D defines an inner product, and hence a metric gp(p) for any

u,veTpMatpe Mas

90(p)(u,v) = (u,V)gp(p) = v' &D(P)u-
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[GEEIEIRSEYMEICM The Riemannian structure of statistical manifolds

We can give the Taylor expansion for D, when perturbing by ép € T,M a
given p € M onto p+ dp € M s.t. supp (p + dp) C supp (p) as

1 1
D(p. p+0p) = 5ap(P)(9p,6p) + O(3p°) = 56" b (p)op + O(9p%),

since the less degree terms of Jp absent as D(p, p) = 0 to be a global
minimum.

A numerical function f defined on pairs of probability distributions is
monotone if

f(5(p), 5(q)) < f(p, q),
for all stochastic map S and for all PDs p, g.
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[GEEIEIRSEYMEICM The Riemannian structure of statistical manifolds

Monotone divergence induce monotone metric

A metric is monotone metric if its geodesic distance is a monotone

function. For a stochastic map S let p’ = S(p) and 6p’ = S(dp). The
monotonicity of the divergence D implies

D(p .p' +6p') < D(p,p+dp),

which is equivalent with

go(p) > S"gp(5(p))S up to O(6p).
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[GEEIEIRSEYMEICM The Riemannian structure of statistical manifolds

The Fisher Information Matrix

Motivation
We seek a quantitative measure of the extent that two distributions p(x; 6)
and p(x; 0 + df) can be distinguished. Consider the relative difference

. _ ) 9p(x:0) do; ]
A - Pxi0+db) —p(xi0) S -y 0 log p(x; 0) 46,
p(x;0) p(x;0) 90

The expected value

(D) = E,A = / dxp(x;0) > %ga’;(:“@)de, =

0
Zd@;aei/dxp(x,e) =0.
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[GEEIEIRSEYMEICM The Riemannian structure of statistical manifolds

We consider the variance

0log p(x;0) dlog p(x; 0)
2\ 2 _ . . .
(A?) = E,A2 = /dxp(x,e)§ : o 56; d6,;do;

i

as a measure of the infinitesimal difference between the two distributions,
so we could say d¢? = E,A? between the points 6 and 6 + df on the
manifold. It suggests introducing the matrix (gj;)

(9|o x:0) 0log p(x; 6
/ dxp(x gp( ) g;e( ) _

gii(0

/d 1 0p(x;80)90p(x;0)
(x;0) 00; 00;

the Fisher information matrix and for the infinitesimal distance d/

= Zgu(e)de,dej

i
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[GEEIEIRSEYMEICM The Riemannian structure of statistical manifolds

Rao was the first to realize in 1945 that a statistical manifold (a family of
densities) can be considered as a Riemannian manifold where Fisher
information matrix plays the role of metrics.

Theorem (Chentsov)

Up to a constant factor the Fisher information matrix yields the only
monotone family of Riemann metrics on the class of finite probability
simplexes.
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[GEEIEIRSEYMEICM The Riemannian structure of statistical manifolds
The Fisher-Rao metric

We restrict ourself to the open probability simplex
Po={p=(pr,---,pn): pi >0,> pi=1}.
i
The tangent space is given by
TPn:{ueR”:Zu;:O}.

Then the Fisher-Rao metric is given by

uivi
gP(”? V) = <U7 V>g(p) = Z )

for all tangent vector u,v € TP,.
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[GEEIEIRSEYMEICM The Riemannian structure of statistical manifolds

Fisher-Rao metric as induced metrics by f-divergences

For a sufficiently smooth convex function f : Rt — R™, with (1) = 0, for
the monotone f-divergence D¢(p, q) = >, pif (%) the induced metric
gp,(p) at p € P, is given by

2

 Otds

_ f”(l) Z ujvi

p.7
i 1

for all u,v € TP, according to the Chentsov Theorem.

ap,(p)(u,v) = Df(p + tu, p+ sv)|t=s—0 =
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[OIETN DT NENNGERSM The quantum f-divergences

Notations

H is a finite dimensional Hilbert space

B(#H) is the algebra of linear operators

B(H)t={AeB(H): A>0}

B(H)™t ={Ae€ B(H): A>0}

S(H) ={p € B(H)*, Trp = 1} is the quantum state space and its
element are called density matrices.

The Hilbert-Schmidt inner product is

(A,B) = TrA*B, A,B e B(H)

The left and right multiplications of A € B(H) are
LaX = AX, RaX =XA, X B(H)

If A,B € B(H)", then Ls and Lg are positive operators on B(H) with
LARs = Rgla.
On Geometry of Quantum State Space 24 /44



[OIETN DT NENNGERSM The quantum f-divergences

The quantum f-divergence of Petz

Definition

Assume that f : (0,00) — R is an operator convex function. For
A, B € B(H)"" with spectral decomposition A= 3" g, 4 aP, and
B =} hesp(s) bQb. the (standard) f-divergence is

S¢(A, B) := (B2 f(LaRg-1)BY?) = Tr BY2f(LaRg-1)(B'/?),
with

f(LaRg-1) = Z Z f(ab™)Lp,Rq,,

aeSp(A) beSp(B)

which can be extended to general A, B € B(H)" as

S¢(A,B) = !i\rﬂ)SAA—i—E/, B +el).
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U3 GEE T (R
Properties of S

e Joint convexity
For every p;,0; € S(H) and A\; >0, > . Aj =1 we have

St Xipin Y o) <> XiS(pi, o).

@ Monotonicity
Assume that ¢ : S(H) — S(H) is a completely positive
trace-preserving (CPTP) map. Then for any density matrices p, o the
DPI holds, i.e.
SH®(p), () < S¢(p, ).
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[OIETN DT NENNGERSM The quantum f-divergences

The maximal f-divergence of Matsumoto

It is natural to ensure the generalization of a divergence to be independent
of the measurement choice. This, in particular, can be achieved by
performing maximization over all POVM available, i.e.

D(p,0) = max D(p, ),

isi

such that p; = Tr (pl1;), gi = Tr (ol;), where [1; >0 and >, 1; = /.
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[OIETN DT NENNGERSM The quantum f-divergences

Definition
Assume that f : (0,00) — R is an operator convex function. For
A, B € B(H)*" the maximal f-divergence is
S (A, B) := Tr BY2f(B~Y2AB~1/?)B1/2,
which can be extended to general A, B € B(H)" as

S(A,B) = aII\TO Sr(A+el,B+el).
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[OIETN DT NENNGERSM The quantum f-divergences

Properties of S

e 57 is jointly convex
e 5/ is monotone under CPTP maps (DPI)

@ 5/ is maximal among monotone quantum f-divergences
Se(A,B) < SPP™(A,B), A,BeB(H)".
Examples
© Se(AB)=TrA’B™! = ST(A, B)
@ Sciogx(A B) = TrAlog A — log B) = S(A, B)
@ S, = Tr Alog(AY2B1Al/2) = Sps(A, B)
S(Av B) < SBS(Av B)
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Quantum Counterparts Monotone metrics

Petz's monotone metrics

@ Denote D,, the invertible n x n density matrices. This is a
differentiable manifold with tangent space at the footpoint p

T,Dp={Ae M : TrA=0}

@ Recall that a Riemannian metric g, with footpoint p on D, is called
monotone metric if

gT(p)(T(A)ﬂ T(A)) < gP(AvA)

for all TPCP map T and A € 7,D,.
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Quantum Counterparts Monotone metrics

An operator monotone function f : Rt — R™T is called symmetric if
f(x) = xf(x~!) and normalized if f(1) = 1. With each symmetric and
normalized operator monotone function f we associate its
Morozova-Chentsov function via

1
Cf(Xa 1)

cr(x,y) = yfzx)’ and conversely f(x) =

There is a plethora of suitable f functions, for example

2xetl/2 1 x—12yx 1+4x
1+x27  logx  logx 1+ x’ 2

where o € [0,1/2].
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Quantum Counterparts Monotone metrics

Petz's Theorem on characterisation of monotone metrics

Theorem
There exists a bijective correspondence between monoton metrics on D,,
and symmetric, normalized operator monotone functions f on (0, c0), given
by
f — —
g,(A, B) = (A, (f(L,R, DR,)71B) = Tr (Ace(Ly, Ro)(B)),
where A, B € 7,D,.

At a point where p is diagonal, p = Diag(A1, A2, ..., An), the lenght square
of any tangent vector A is

1

A2
gh(AA) = AP =3 | (1) D7 SF +237 er(hi, A)IA

i<j
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[OIETNIT RSN ERS  Monotone metrics as induced metric by f-divergences

Monotone metrics as induced metric by f-divergences

Theorem (Lesniewski-Ruskai)
Any monotone metric is obtained from standard f-divergence by derivation
f o
gp(A7 B) = _msf:(p + tAvp + SB)‘t:SZO;
where the relation of the function F to the function f is
1 F(x)+xF(x71)
fx)  (x—1)?
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Quantum Counterparts Metric adjusted skew informations

Metric adjusted skew informations

It is useful to decompose the tangent space
ToDn={AcM,:A=A"TrA=0}

as the direct sum of a “commuting” and a “non-commuting” part w.r.t. p.
We set

(T,Dn) ={A € T,Dy: [A, p] =0}

the commuting part and define (7,D,)° as the orthogonal complement
of (7,D,)¢ w.r.t. the Hilbert-Schmidt inner product. Then

ToDn = (T,Dn) @ (T,Dn)°.

Whenever A € (7,D,)¢, we have g/ (A, A) = Tr p~1 A2,
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(OIETN DT NETIIIIE S  Metric adjusted skew informations

A tipical element of (7,D,) is i[p, K], (K € M;?) and we can define the
metric adjusted skew information by

1) = "Dt il k1, o, k)

o With the choice f(x) = M we get the Wigner-Yanase
information:

1
IH(K) = —5Tr (IK, VA? = TrpK? — Tr pt/2 K pt/2K.

o With the choice f(x) = 11X we get the quantum Fisher
information, with p = >, A\¢|k)(k|:

_ 2
I7(K) = Folp, K] = 2ZM
k,l

2
Sl kIK I,

@ For a general f we can write explicitly:

|(k|K|I
}jA L ki,
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Our contribution

QOT via quantum channels

The approach of De Palma and Trevisan!

e For any p,o € S(H), the set M(p, o) of quantum transport maps
from p to o is the set of the quantum channels (CPTP maps) such
that

& Ti(supp (p)) = Tu(H), @(p) =0

@ We can associate with any ® € M(p, o) the quantum state
Mo € S(H®H*) by

MNe = (<D®/T1 > )(H\[» ((Voll) -

1G. De Palma and D. Trevisan, Quantum optimal transport with quantum channels,
Ann. Henri Poincaré 22 (2021), 3199-3234.
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Our contribution

@ Since
TI"HH¢ = pT ad Tl";.,g*rlq) = 0,

where X T is the transpose map, i.e. X (¢| = (¢| X, it induce the
following definition:

@ The set of quantum couplings assosiated with p,o € S(H) is
Clp,o)={NeSHOH") : Tryl=pT, TryyMN=0}.

@ De Palma and Trevisan showed that for any p,o € S(H), the map
® — Mg is a bijection between M(p, o) and C(p, ), that is in
striking contrast to the classical case, the quantum couplings are in
one-to-one correspondance with the quantum transport maps.

@ Why? The primary reason: quantum channels can “split mass”, i.e.
they can send pure states to mixed states.
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Our contribution

o The cost operator for fixed self-adjoint operators {A;} Y ;:

2

Jj=1

@ The transport cost for a coupling I is

@ The quantum Wasserstein (pseudo-)distance D¢(p, o) is defined
by

D (p.0) = inf (M)
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Our contribution

Some strange properties

° DC(p7 U) = DC(U7p) \/
e If p = o then the optimal transport map corresponds to the identity

map & =1, s0 Dc(p, p)* = C (||v/p)) ({v/7|) and
N
Dc(p,p)> = —>_ Tr ([Ai,vol)
i=1

M
= 23" (Tr (pA2) — Tr (VPAI/DAY)) .
i=1

which is the famous the Wigner — Yanase information!

e For any p, 7,0 € S(H) the modified triangle inequality holds:

Dc(p,0) < De(p,7) + De(7,7) + De(r, 0).
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Our contribution

Our contribution?

A bipartite quantum state is separable if it can be given as

D PV (Wi @ [Pr) (D],
P

with >~ px = 1. If a state cannot be written in this form, then it is called
entangled. We denote the convex set of separable states by Ssep. We
define the modified quantum Wasserstein (pseudo-)distance by

N
2
2 - : T
DZ, (p,0) = inf C(1) = inf ler (AJ-@/ . —/H®Aj> n,
J:

where 1 € C (p,0) N Ssep are the separable couplings of the marginals p
and o.

2Géza Téth, J.P.Quantum Wasserstein distance based on an optimization over
separable states, Quantum 7 (2023), 1143
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Our contribution

@ For two qubits, it is computable numerically with semidefinite
programming.
@ In general,
Dsep(p; o) = D(p, o).
o If the relation
Dsep(p,0) > D(p,0)

holds, then all optimal I for D(p, o) is entangled.
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Our contribution

Let us consider the distance between two single-qubit mixed states

1 1

= Z]IN(1] + >/

p=5I0A+ 1,

and .
U¢_efi2¢p+i7y¢

for N =1 and A; = 0,.

0.5

,sep(ga ”¢)

DPT.

2

Iz)PT(Q, 0'¢)7

0 0.1 0.2 0.3 0.4 0.5
é/m

Thus, an entangled I can be cheaper than a separable one.
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The modified self-distance

@ For the self-distance in the modified case for N = 1 we get

1
Dsep(pa P)2 = ZFQ[P’ Al

where

Ak — )2
Folp. Al =23~ B 2 igapn e,
7 Mt

the quantum Fisher information of the state p = Y, A¢|k) (k| w.r.t
the selfadjoint operator A.

@ Note that )
(A) < 3 Falo. A < (8A),

where I,(A) is the Wigner-Yanase information and (AA)? is the
variance.
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Our contribution

Summary

@ For the quantum Wasserstein distance, we restrict the optimization to
separable states.

@ Then, the self-distance is the quarter of the quantum Fisher
information.

@ We found a fundamental connection from quantum optimal transport
to quantum entanglement theory and quantum metrology.

Thank you for your kind attention!
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