
Gradient magnetometry with various types of spin ensembles
Single atomic ensembles, chain of spins & two different ensembles

Iagoba Apellaniz1 Iñigo Urizar-Lanz1 Zoltán Zimborás1,2,3

Philipp Hyllus1 Géza Tóth1,3,4

1Department of Theoretical Physics, University of the Basque Country UPV/EHU, Bilbao, Spain
2Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, Germany

3Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
4IKERBASQUE, Basque Foundation for Science, Bilbao, Spain

Información Cuántica en España (2023)
- May 30, 2023 -



Outline

1 Multiparameter Quantum Metrology
Cramér-Rao precision bound and quantum Fisher information
Multiparameter qFI matrix and simultaneous estimation

2 System setup and precision bounds of the gradient parameter estimation for various
states

Gradient magnetometry and basic setup of the system
Precision bounds for various systems and different spin states

3 Conclusions



Theoreticalbackground

1

Quantum Metrology
Quantum Fisher Information

The quantum Cramér-Rao (qCR) bound provides an upper bound for the precision
1

(Δ𝜃)2
⩽ 𝜇ℱQ[𝜚 , 𝐴].

Goal: Minimize (Δ𝜃)2, or equivalently maximize ℱQ[𝜚 , 𝐴].
Quantum Fisher information

ℱQ[𝜚 , 𝐴] = 2
∑
𝜆≠𝜇

(𝑝𝜆 − 𝑝𝜇)2

𝑝𝜆 + 𝑝𝜇
|⟨𝜆|𝐴|𝜇⟩|2

written on the eigenbasis of the state, 𝜚 =
∑

𝑝𝜆 |𝜆⟩⟨𝜆|.
[M.G.A. Paris (2009), ĲQI 7, 125]
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2

Quantum Metrology
Quantum Fisher Information

ℱQ[𝜚 , 𝐴] = 2
∑
𝜆≠𝜇

(𝑝𝜆 − 𝑝𝜇)2

𝑝𝜆 + 𝑝𝜇
|⟨𝜆|𝐴|𝜇⟩|2

Properties of the qFI for a single parameter estimation problem

1 It is independent of the measurement. An optimal measurement exists though,
which saturates the qCR bound.

2 It is convex over the set of quantum states. Hence, it is maximized by a pure state.
3 For pure states ℱQ[|Ψ⟩, 𝐴] = 4(Δ𝐴)2Ψ.

[M G A Paris (2009), ĲQI 7, 125]

[G Tóth et al. (2014), JPA:MT 47, 424006]

[L. Pezzé et al. (2018), RMP 90, 035005]
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Theoreticalbackground

3

Quantum Metrology
QFI and entanglement

Entanglement: where 𝑈 = exp(−𝑖𝜃𝐽𝑧) and 𝐽𝑧 =
∑𝑁

𝑛 𝑗
(𝑛)
𝑧 .

1 Separable states can achieve at most the so-called Shot-noise limit (SNL),

ℱQ[𝜚sep , 𝐽𝑧] ⩽ 𝑁.

2 An ultimate limit is obtained maximizing the qFI over all pure states

max
|Ψ⟩

ℱQ[|Ψ⟩, 𝐽𝑧] = 𝑁2 ,

which is called the Heisenberg limit.
Hence, entanglement is needed to overcome the SNL.

[V Giovannetti et al. (2004), Science 306 1330]

E.g. entanglement criteria based on qFI

Due to its tight relation with the variance, qFI has been used to improve some
entanglement conditions.

[G Tóth (2022), PRR 4 013075]
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Theoreticalbackground

4

Multiparameter Quantum Metrology
Motivation

Ion chains can be used to estimate the magnetic field as a function of position, 𝐵(𝑥).
[Matteo Fadel et al., arXiv.org:2201.11081]

States insensitive to the homogeneous fields have been prepared in elongated traps.

[N Behbood et al. (2014), PRL 113 093601]
[I Urizar-Lanz et al. (2013), PRA 88 013626]

Two spatially separated ensembles of atoms have been prepared with a highly
entangled spin state.

[K Langle et al. (2018), Science 360 6387]

We assume that the magnetic field is pointing in the 𝑧-direction and its Taylor expansion
around the origin is

𝑩 = (0, 0, 𝐵0) + (0, 0, 𝑥𝐵1) + 𝒪(𝑥2).
One cannot avoid the interaction with the homogeneous field. We want to estimate 𝐵1.
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Theoreticalbackground

5

Multiparameter Quantum Metrology
Cramér-Rao matrix inequality

Consider the following evolution for the state

𝜚𝜽 = e−𝑖
∑

𝑘 𝐴𝑘𝜃𝑘 𝜚 e+𝑖
∑

𝑘 𝐴𝑘𝜃𝑘 .

In this case the CR bound is a matrix inequality for the covariance matrix

Cov[𝜃𝑖 , 𝜃𝑗] ⩾
1
𝜇
(𝓕Q

−1)𝑖 , 𝑗 ,

where Cov[𝜃𝑖 , 𝜃𝑗] = ⟨𝜃𝑖𝜃𝑗⟩ − ⟨𝜃𝑖⟩⟨𝜃𝑗⟩.

The qFI matrix elements are

ℱQ[𝜚 , 𝐴𝑖 , 𝐴𝑗] := (𝓕Q)𝑖 , 𝑗 = 2
∑
𝜆≠𝜇

(𝑝𝜆 − 𝑝𝜇)2

𝑝𝜆 + 𝑝𝜇
⟨𝜆|𝐴𝑖 |𝜇⟩⟨𝜇|𝐴𝑗 |𝜆⟩.

For pure states we have ℱQ[|Ψ⟩, 𝐴𝑖 , 𝐴𝑗] = 4(⟨𝐴𝑖𝐴𝑗⟩Ψ − ⟨𝐴𝑖⟩Ψ⟨𝐴𝑗⟩Ψ).
When [𝐴𝑖 , 𝐴𝑗] = 0, the bounds can be saturated.

PRA 97, 053603 (2018) ICE8, May 30 iagoba.apellaniz@gmail.com



Theoreticalbackground

5

Multiparameter Quantum Metrology
Cramér-Rao matrix inequality

Consider the following evolution for the state

𝜚𝜽 = e−𝑖
∑

𝑘 𝐴𝑘𝜃𝑘 𝜚 e+𝑖
∑

𝑘 𝐴𝑘𝜃𝑘 .

In this case the CR bound is a matrix inequality for the covariance matrix

Cov[𝜃𝑖 , 𝜃𝑗] ⩾
1
𝜇
(𝓕Q

−1)𝑖 , 𝑗 ,

where Cov[𝜃𝑖 , 𝜃𝑗] = ⟨𝜃𝑖𝜃𝑗⟩ − ⟨𝜃𝑖⟩⟨𝜃𝑗⟩.
The qFI matrix elements are

ℱQ[𝜚 , 𝐴𝑖 , 𝐴𝑗] := (𝓕Q)𝑖 , 𝑗 = 2
∑
𝜆≠𝜇

(𝑝𝜆 − 𝑝𝜇)2

𝑝𝜆 + 𝑝𝜇
⟨𝜆|𝐴𝑖 |𝜇⟩⟨𝜇|𝐴𝑗 |𝜆⟩.

For pure states we have ℱQ[|Ψ⟩, 𝐴𝑖 , 𝐴𝑗] = 4(⟨𝐴𝑖𝐴𝑗⟩Ψ − ⟨𝐴𝑖⟩Ψ⟨𝐴𝑗⟩Ψ).
When [𝐴𝑖 , 𝐴𝑗] = 0, the bounds can be saturated.

PRA 97, 053603 (2018) ICE8, May 30 iagoba.apellaniz@gmail.com



Theoreticalbackground

5

Multiparameter Quantum Metrology
Cramér-Rao matrix inequality

Consider the following evolution for the state

𝜚𝜽 = e−𝑖
∑

𝑘 𝐴𝑘𝜃𝑘 𝜚 e+𝑖
∑

𝑘 𝐴𝑘𝜃𝑘 .

In this case the CR bound is a matrix inequality for the covariance matrix

Cov[𝜃𝑖 , 𝜃𝑗] ⩾
1
𝜇
(𝓕Q

−1)𝑖 , 𝑗 ,

where Cov[𝜃𝑖 , 𝜃𝑗] = ⟨𝜃𝑖𝜃𝑗⟩ − ⟨𝜃𝑖⟩⟨𝜃𝑗⟩.
The qFI matrix elements are

ℱQ[𝜚 , 𝐴𝑖 , 𝐴𝑗] := (𝓕Q)𝑖 , 𝑗 = 2
∑
𝜆≠𝜇

(𝑝𝜆 − 𝑝𝜇)2

𝑝𝜆 + 𝑝𝜇
⟨𝜆|𝐴𝑖 |𝜇⟩⟨𝜇|𝐴𝑗 |𝜆⟩.

For pure states we have ℱQ[|Ψ⟩, 𝐴𝑖 , 𝐴𝑗] = 4(⟨𝐴𝑖𝐴𝑗⟩Ψ − ⟨𝐴𝑖⟩Ψ⟨𝐴𝑗⟩Ψ).

When [𝐴𝑖 , 𝐴𝑗] = 0, the bounds can be saturated.

PRA 97, 053603 (2018) ICE8, May 30 iagoba.apellaniz@gmail.com



Theoreticalbackground

5

Multiparameter Quantum Metrology
Cramér-Rao matrix inequality

Consider the following evolution for the state

𝜚𝜽 = e−𝑖
∑

𝑘 𝐴𝑘𝜃𝑘 𝜚 e+𝑖
∑

𝑘 𝐴𝑘𝜃𝑘 .

In this case the CR bound is a matrix inequality for the covariance matrix

Cov[𝜃𝑖 , 𝜃𝑗] ⩾
1
𝜇
(𝓕Q

−1)𝑖 , 𝑗 ,

where Cov[𝜃𝑖 , 𝜃𝑗] = ⟨𝜃𝑖𝜃𝑗⟩ − ⟨𝜃𝑖⟩⟨𝜃𝑗⟩.
The qFI matrix elements are

ℱQ[𝜚 , 𝐴𝑖 , 𝐴𝑗] := (𝓕Q)𝑖 , 𝑗 = 2
∑
𝜆≠𝜇

(𝑝𝜆 − 𝑝𝜇)2

𝑝𝜆 + 𝑝𝜇
⟨𝜆|𝐴𝑖 |𝜇⟩⟨𝜇|𝐴𝑗 |𝜆⟩.

For pure states we have ℱQ[|Ψ⟩, 𝐴𝑖 , 𝐴𝑗] = 4(⟨𝐴𝑖𝐴𝑗⟩Ψ − ⟨𝐴𝑖⟩Ψ⟨𝐴𝑗⟩Ψ).
When [𝐴𝑖 , 𝐴𝑗] = 0, the bounds can be saturated.

PRA 97, 053603 (2018) ICE8, May 30 iagoba.apellaniz@gmail.com



Outline

1 Multiparameter Quantum Metrology
Cramér-Rao precision bound and quantum Fisher information
Multiparameter qFI matrix and simultaneous estimation

2 System setup and precision bounds of the gradient parameter estimation for various
states

Gradient magnetometry and basic setup of the system
Precision bounds for various systems and different spin states

3 Conclusions



System
setup

and
Δ
𝑏1

bounds

6

Gradient magnetometry and basic setup

The system is elongated in one of the spatial directions. The quantum state is a
product state between position and spin states,

𝜚 = 𝜚(x) ⊗ 𝜚(s) .

In this work we assume that the position state is an statistical mixture of point-like
particles

𝜚(x) =
∫

𝑃(𝒙)
⟨𝒙 |𝒙⟩ |𝒙⟩⟨𝒙 |.
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Gradient magnetometry and basic setup

The atoms interact only with the magnetic field, ℎ(𝑛) = 𝛾𝐵𝑧
(𝑛) ⊗ 𝑗𝑧

(𝑛), where
𝛾 = 𝑔𝜇B. The collective Hamiltonian is

𝐻 = 𝛾
∑

𝐵𝑧
(𝑛) ⊗ 𝑗𝑧

(𝑛) .

The two unknown parameters are 𝐵0 and 𝐵1 are encoded in 𝑏0 and 𝑏1 acting onto
the state with the following unitary operator

𝑈 = e−𝑖(𝑏0𝐻0+𝑏1𝐻1) ,

where
𝐻0 := 𝐽𝑧 =

∑
𝑛

𝑗𝑧
(𝑛) and 𝐻1 =

∑
𝑛

𝑥(𝑛) ⊗ 𝑗𝑧
(𝑛) .

Since [𝐻0 , 𝐻1] = 0, the precision bounds can be saturated.

In the following we are interested on the precision bound for 𝑏1, the gradient parameter.
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(𝑛) .

Since [𝐻0 , 𝐻1] = 0, the precision bounds can be saturated.

In the following we are interested on the precision bound for 𝑏1, the gradient parameter.
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Precision bounds for states insensitive to the homogeneous 𝐵0

For states that commute with the homogeneous field, [𝜚 , 𝐽𝑧] = 0, the precision bound is

1
(Δ𝑏1)2

⩽ ℱQ[𝜚 , 𝐻1],

and it is saturable.

For statistical mixtures of point-like particles

1
(Δ𝑏1)2

⩽
∑
𝑛,𝑚

∫
𝑥𝑛𝑥𝑚𝑃(𝒙)d𝒙 ℱQ[𝜚(s) , 𝑗𝑧 (𝑛) , 𝑗𝑧 (𝑚)]

Precision bounds for states sensitive to the homogeneous 𝐵0

For states sensitive to global rotations of the spin state, the precision bound is

1
(Δ𝑏1)2

⩽ (𝓕Q)1,1 −
(𝓕Q)20,1
(𝓕Q)0,0

.

For statistical mixtures of point-like particles
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⩽
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)2

ℱQ[𝜚(s) , 𝐽𝑧]
.
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Chain of qubits

𝑃(𝒙) =
∏
𝑛

𝛿(𝑥𝑛 − 𝑛𝑎).

Mean particle position:

𝜇 = 𝑎
𝑁 + 1

2

Variance of the particle positions:

𝜎2 = 𝑎2 𝑁
2 − 1
12

Totally polarized |0⟩⊗𝑁𝑦 state under a magnetic
field pointing towards the 𝑧-direction

1
(Δ𝑏1)2

⩽
∑
𝑛,𝑚

𝑛𝑚𝑎2ℱQ[|0⟩⊗𝑁𝑦 , 𝑗𝑧
(𝑛) , 𝑗𝑧 (𝑚)] −

(∑
𝑛 𝑛𝑎ℱQ[|0⟩⊗𝑁𝑦 , 𝑗𝑧

(𝑛) , 𝐽𝑧]
)2

ℱQ[|0⟩⊗𝑁𝑦 , 𝐽𝑧]

= 𝑎2 𝑁
2 − 1
12 𝑁 = 𝜎2𝑁.
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Single ensemble of point-like spin-1
2 atoms

Permutationally invariant PDF

𝑃(𝒙) = 1
𝑁 !

∑
𝑘∈𝑆𝑁

𝒫𝑘 [𝑃(𝒙)]

𝜇 =
∫
𝑥𝑛𝑃(𝒙)d𝒙.

𝜎2 =
∫
𝑥2
𝑛𝑃(𝒙)d𝒙, if the origin is at 0.

𝜂 =
∫
𝑥𝑛𝑥𝑚𝑃(𝒙)d𝒙 for 𝑛 ≠ 𝑚.

𝜂 ∈ [−𝜎2/(𝑁 − 1), 𝜎2].

Precision CR bound

1
(Δ𝑏1)2

⩽ (𝜎2 − 𝜂)
∑
𝑛

ℱQ[𝜚(s) , 𝑗𝑧 (𝑛)]

+ 𝜂 ℱQ[𝜚(s) , 𝐽𝑧]

[N Behbood et al. (2014), PRL 113 093601]
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Single ensemble of point-like spin-1
2 atoms

Precision bounds for various spin states

Singlet states

𝜚(s) =
∑
𝜆

𝑝𝜆 |0, 0, 𝑖⟩⟨0, 0, 𝑖 |

Its precision bound is

1
(Δ𝑏1)2

⩽ (𝜎2 − 𝜂)𝑁.

Best separable state

ℱQ[|𝜓⟩sep , 𝑗𝑧
(𝑛) , 𝑗𝑧 (𝑚)] =

{
4(Δ𝑗𝑧

(𝑛))2 if 𝑛 = 𝑚

0 otherwise.

Then, the precision is

1
(Δ𝑏1)2

⩽ 𝜎2𝑁.

|GHZ⟩ states

ℱQ[|GHZ⟩, 𝑗𝑧 (𝑛)] = 1

and

ℱQ[|GHZ⟩𝑥 , 𝐽𝑧] = 𝑁2 .

Hence,

1
(Δ𝑏1)2

⩽ (𝜎2 − 𝜂)𝑁

+ 𝜂𝑁2 .

More in PRA 97, 053603 (2018)
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Double well of atoms

𝑃(𝒙) =
𝑁/2∏
𝑛=1

𝛿(𝑥𝑛 + 𝑎)
𝑁∏

𝑛=𝑁/2+1
𝛿(𝑥𝑛 − 𝑎)

The contribution of the position of the particles:∫
𝑥𝑛𝑃(𝒙)d𝒙 =

{
−𝑎
+𝑎 and

∫
𝑥𝑛𝑥𝑚𝑃(𝒙)d𝒙 =

{
+𝑎2

−𝑎2

In this case the mean position is 𝜇 = 0 and the
variance is 𝜎2 = 𝑎2.

[K Langle et al. (2018), Science 360
6387]

For spin- 1
2 system, the state that maximizes the bound is

|𝜓⟩ = |
𝑁/2

0, . . . , 0,
𝑁/2

1, . . . , 1⟩ + |1, . . . , 1, 0, . . . , 0⟩√
2

, and 1
(Δ𝑏1)2

⩽ 𝜎2𝑁2 .
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Double well of atoms

Product of two equal spin states

For states of the type |𝜓⟩(L) ⊗ |𝜓⟩(R), we have that

ℱQ[|𝜓⟩(L) ⊗ |𝜓⟩(R) , 𝑗𝑧 (𝑛) , 𝑗𝑧 (𝑚)] =
{
ℱQ[|𝜓⟩, 𝑗𝑧 (𝑛) , 𝑗𝑧 (𝑚)] if 𝑛 and 𝑚 same well
0 otherwise

Hence, the precision bounds can be simply computed for 𝑁/2 particles at one of the
wells,

1
(Δ𝑏1)2

⩽ 2𝜎2ℱQ[|𝜓⟩, 𝐽𝑧 (𝑁/2)] ⩽ 𝜎2𝑁2/2.
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Double well of atoms
What if we want to estimate both parameters?

If we assume 𝑎 = 1, we have that 𝐻0 = 𝐽𝑧
(L)+𝐽𝑧 (R) and 𝐻1 = 𝐽𝑧

(L)−𝐽𝑧 (R).

ℱQ[𝜌, 𝐻0] + ℱQ[𝜌, 𝐻1] = 2ℱQ[𝜌, 𝐽𝑧 (L)] + 2ℱQ[𝜌, 𝐽𝑧 (R)]

Separable states
ℱQ[𝜌, 𝐻0] + ℱQ[𝜌, 𝐻1] = 2𝑁L + 2𝑁R = 2𝑁.

Heisenberg limit for evenly split systems

ℱQ[𝜌, 𝐻0] + ℱQ[𝜌, 𝐻1] = 2𝑁2
L + 2𝑁2

R = 𝑁2 .

Examples
|GHZ⟩ → ℱQ[|𝜓⟩, 𝐻0] = 𝑁2 and ℱQ[|𝜓⟩, 𝐻1] = 0.

|𝜓⟩ = |
𝑁/2

0, . . . ,
𝑁/2

1, . . . ⟩ + |1, . . . , 0, . . .⟩√
2

→ ℱQ[|𝜓⟩, 𝐻1] = 𝑁2 and ℱQ[|𝜓⟩, 𝐻0] = 0.
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Summary

Conclusions
In principle, the effect of an unknown global rotation has to be considered.

For a single ensemble with localized particles, a method with a huge practical
advantage, the shot-noise limit can be surpassed if and only if there is a strong
statistical correlation between the particle positions.

There is a trade-off between homogeneous and gradient magnetometry if one
wants to estimate both parameters at the same time.

Thank you for your attention!
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