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Quantum Metrology

Quantum Fisher Information

m Goal: Minimize (A0)?2, or equivalently maximize Fqlo, A].

Xi

1

E

m The quantum Cramér-Rao (qCR) bound provides an upper bound for the precision

1
or < ufalo, Al

PRA 97, 053603 (2018)

ICES, May 30

iagoba.apellaniz@gmail.com

pUﬂUJS}[)Pq [ednaIoay ],

1



Quantum Metrology

w Quantum Fisher Information
X

E

m The quantum Cramér-Rao (qCR) bound provides an upper bound for the precision

1
—— < LAl
20y ualo, Al
m Goal: Minimize (A0)?, or equivalently maximize Falo, Al.
m Quantum Fisher information

(pa = pu)?
Folo, Al =2 ) ——L—[(AlAlw?
A#u PA* Pu
written on the eigenbasis of the state, o = ), pa|AXA|.

[M.G.A. Paris (2009), [JQI 7, 125]
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Quantum Metrology

Quantum Fisher Information
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Folo, Al=2) %
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Properties of the qFI for a single parameter estimation problem

| Itis independent of the measurement. An optimal measurement exists though,

which saturates the qCR bound.

[M G A Paris (2009), [JQI 7, 125]
[G Téth et al. (2014), JPA:MT 47, 424006]
[L. Pezzé et al. (2018), RMP 90, 035005]
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Quantum Metrology

Quantum Fisher Information

(PA_P,Lt)z 2
Folo, Al =2 —F— (1A
ale Al ;,4 o py Al

Properties of the qFI for a single parameter estimation problem

| Itis independent of the measurement. An optimal measurement exists though,
which saturates the qCR bound.

It is convex over the set of quantum states. Hence, it is maximized by a pure state.

[M G A Paris (2009), IJQI 7, 125]
[G Toth et al. (2014), JPA:MT 47, 424006]
[L. Pezzé et al. (2018), RMP 90, 035005]
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Quantum Metrology

Quantum Fisher Information

_ (pa — P,u)2 2
Tale, Al = z;H S|k
Properties of the qFI for a single parameter estimation problem
| Itis independent of the measurement. An optimal measurement exists though,
which saturates the qCR bound.
It is convex over the set of quantum states. Hence, it is maximized by a pure state.
For pure states F[|W), A] = 4(AA)? .

[M G A Paris (2009), IJQI 7, 125]
[G Toth et al. (2014), JPA:MT 47, 424006]
[L. Pezzé et al. (2018), RMP 90, 035005]
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Quantum Metrology

QFI and entanglement

Entanglement: where U = exp(-if],) and J, = Zﬁl jg”).
B Separable states can achieve at most the so-called Shot-noise limit (SNL),
Folosep, J-1 < N.
An ultimate limit is obtained maximizing the qFI over all pure states
max FlIV), J-] = N?,
which is called the Heisenberg limit.
Hence, entanglement is needed to overcome the SNL.

[V Giovannetti ef al. (2004), Science 306 1330]
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Quantum Metrology

QFI and entanglement

Entanglement: where U = exp(-if],) and J, = N ji”).
B Separable states can achieve at most the so-called Shot-noise limit (SNL),
7:Q[Qsep/]z] <N.

An ultimate limit is obtained maximizing the qFI over all pure states
max Fo[|V), J=1= N?,
)
which is called the Heisenberg limit.
Hence, entanglement is needed to overcome the SNL.

[V Giovannetti ef al. (2004), Science 306 1330]

E.g. entanglement criteria based on qFI

m Due to its tight relation with the variance, qFI has been used to improve some
entanglement conditions.

[G Téth (2022), PRR 4 013075]
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Multiparameter Quantum Metrology

Motivation

m Jon chains can be used to estimate the magnetic field as a function of position, B(x).

[Matteo Fadel et al., arXiv.org:2201.11081]
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Multiparameter Quantum Metrology

Motivation

m Jon chains can be used to estimate the magnetic field as a function of position, B(x).
[Matteo Fadel et al., arXiv.org:2201.11081]

m States insensitive to the homogeneous fields have been prepared in elongated traps.
x

B
pro_bg IZ O 87Rb atoms Y-J-A»i“ O
BS Ly W

@ cpp;

[N Behbood et al. (2014), PRL 113 093601]
[I Urizar-Lanz et al. (2013), PRA 88 013626]
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PRA 97, 053603 (2018) ICE8, May 30 iagoba.apellaniz@gmail.com | 4



Multiparameter Quantum Metrology

Motivation

m Jon chains can be used to estimate the magnetic field as a function of position, B(x).
[Matteo Fadel et al., arXiv.org:2201.11081]

m States insensitive to the homogeneous fields have been prepared in elongated traps.
o
#7Rb atoms Y*  ©
—

20 0

Ly L2

@ cpp;

robe
P —

[N Behbood et al. (2014), PRL 113 093601]
[I Urizar-Lanz et al. (2013), PRA 88 013626]
m Two spatially separated ensembles of atoms have been prepared with a highly
entangled spin state.

punoidsoeq [ednaIoaY ],

[K Langle et al. (2018), Science 360 6387]
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Multiparameter Quantum Metrology

Motivation

m Jon chains can be used to estimate the magnetic field as a function of position, B(x).
[Matteo Fadel et al., arXiv.org:2201.11081]

m States insensitive to the homogeneous fields have been prepared in elongated traps.
x

o

@ cpp;

87Rb atoms ¥

robe

p_’ IZ 0
BS

0

L2

[N Behbood et al. (2014), PRL 113 093601]
[I Urizar-Lanz et al. (2013), PRA 88 013626]
m Two spatially separated ensembles of atoms have been prepared with a highly
entangled spin state.
[K Langle et al. (2018), Science 360 6387]

We assume that the magnetic field is pointing in the z-direction and its Taylor expansion
around the origin is
B =(0,0,Bo) + (0,0, xB1) + O(x?).

PRA 97, 053603 (2018) ICES, May 30 iagoba.apellaniz@gmail.com

punoagyoeq [e

4



Multiparameter Quantum Metrology

Motivation

m Jon chains can be used to estimate the magnetic field as a function of position, B(x).
[Matteo Fadel et al., arXiv.org:2201.11081]

m States insensitive to the homogeneous fields have been prepared in elongated traps.
x

o

@ cpp;

87Rb atoms ¥

robe

p_’ IZ 0
BS

0

L
[N Behbood et al. (2014), PRL 113 093601]
[I Urizar-Lanz et al. (2013), PRA 88 013626]
m Two spatially separated ensembles of atoms have been prepared with a highly
entangled spin state.
[K Langle et al. (2018), Science 360 6387]

We assume that the magnetic field is pointing in the z-direction and its Taylor expansion
around the origin is
B =(0,0,B) +(0,0,xB1) + O(x?).

One cannot avoid the interaction with the homogeneous field.
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Multiparameter Quantum Metrology

Motivation

m Jon chains can be used to estimate the magnetic field as a function of position, B(x).
[Matteo Fadel et al., arXiv.org:2201.11081]

m States insensitive to the homogeneous fields have been prepared in elongated traps.

X B

87Rb atoms Y'k’;‘z
D) () ———
Ls Lo

@ cpp;

robe
P —

[N Behbood et al. (2014), PRL 113 093601]
[I Urizar-Lanz et al. (2013), PRA 88 013626]
m Two spatially separated ensembles of atoms have been prepared with a highly
entangled spin state.
[K Langle et al. (2018), Science 360 6387]

We assume that the magnetic field is pointing in the z-direction and its Taylor expansion
around the origin is
B =(0,0,B) + (0,0, xB1) + O(x?).

We want to estimate B1.
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Multiparameter Quantum Metrology

w Cramér-Rao matrix inequality

Consider the following evolution for the state

0o = e 2k A0k g ot Tk Ak |
m In this case the CR bound is a matrix inequality for the covariance matrix
1 -1
Cov[0;,0;] > ;(TQ )ijr

where Cov[6;, ;] = (0;0;) — (0;)(0;).

pun(uh’)pvq [ednaI0ay ],
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Multiparameter Quantum Metrology

w Cramér-Rao matrix inequality

Consider the following evolution for the state

0o = e 2k A0k g ot Tk Ak |

m In this case the CR bound is a matrix inequality for the covariance matrix
1 -1
Cov[0;,0;] > ;(‘FQ )ijr
where Cov[0;, 0;] = (0;0;) — (0;)(0;)-
m The qFI matrix elements are
(pr = Pp)z

Folo, Ai, Ajl = (Fq)i,; =2
alo, Ai Aj] = (F )i, A;, g

. (ALA; )l AjlA).
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Multiparameter Quantum Metrology

w Cramér-Rao matrix inequality

Consider the following evolution for the state

0o = e 2k A0k g ot Tk Ak |

m In this case the CR bound is a matrix inequality for the covariance matrix
1 -1
Cov[0;,0;] > ;(‘FQ )ijr
where Cov[0;, 0;] = (0;0;) — (0;)(0;)-
m The qFI matrix elements are
(pa —pu)?

Falo, Ai, Ajl = (Fqij =2
Qle ! @ );4 PA+ Pu

(ALA; )l AjlA).

m For pure states we have Fo[|\W), A;, Aj] = 4(<AjA]‘>\II - <Ai>\IJ<Aj>\y)~
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Multiparameter Quantum Metrology

w Cramér-Rao matrix inequality

Consider the following evolution for the state

0o = e 2k A0k g ot Tk Ak |

m In this case the CR bound is a matrix inequality for the covariance matrix
1 -1
Cov[0;,0;] > ;(‘FQ )ijr
where Cov[0;, 0;] = (0;0;) — (0;)(0;)-
m The qFI matrix elements are
(pa —pu)?

Falo, Ai, Ajl = (Fqij =2
Qle ! @ );4 PA+ Pu

(ALA; )l AjlA).

m For pure states we have Fo[|\W), A;, Aj] = 4(<AjA]‘>\II - <Ai>\IJ<Aj>\y)~
m When [A;, Aj] = 0, the bounds can be saturated.
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Outline

System setup and precision bounds of the gradient parameter estimation for various
states
m Gradient magnetometry and basic setup of the system

m Precision bounds for various systems and different spin states
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Gradient magnetometry and basic setup

R

m The system is elongated in one of the spatial directions. The quantum state is a
product state between position and spin states,

0= 0™ oo,
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v Gradient magnetometry and basic setup

m The system is elongated in one of the spatial directions. The quantum state is a
product state between position and spin states,

0= 0™ oo,

m In this work we assume that the position state is an statistical mixture of point-like

particles
~_ [ P&
o= [ sl
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Gradient magnetometry and basic setup

R

m The atoms interact only with the magnetic field, 1" = B, ® j,("), where
y = gug. The collective Hamiltonian is

H=y Z BZ(") ®]'Z(n).
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ﬁ? Gradient magnetometry and basic setup

m The atoms interact only with the magnetic field, 1" = B, ® j,("), where
y = gug. The collective Hamiltonian is

H=y Z BZ(") ®]'Z(n).

m The two unknown parameters are By and By are encoded in by and b1 acting onto
the state with the following unitary operator

~i(bgHo+b1 H
U = e i(boHo+b1Hy)

where

spunoq Iqy pue dnjas wajsAg

Hy:=], = ij(") and  Hj = Z M g j, (M,
n n
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y = gug. The collective Hamiltonian is
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m The two unknown parameters are By and By are encoded in by and b1 acting onto
the state with the following unitary operator

~i(bgHo+b1 H
U = e i(boHo+b1Hy)

where

spunoq Iqy pue dnjas wajsAg

Hy:=], = ij(") and  Hj = Z M g j, (M,
n n

m Since [Hy, H1] = 0, the precision bounds can be saturated.
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ﬁ? Gradient magnetometry and basic setup

m The atoms interact only with the magnetic field, 1" = B, ® j,("), where
y = gug. The collective Hamiltonian is

H=y Z BZ(") ®]'Z(n).

m The two unknown parameters are By and By are encoded in by and b1 acting onto
the state with the following unitary operator

~i(bgHo+b1 H
U = e i(boHo+b1Hy)

where

spunoq Iqy pue dnjas wajsAg

Hy:=], = ij(") and  Hj = Z M g j, (M,
n n

m Since [Hy, H1] = 0, the precision bounds can be saturated.

In the following we are interested on the precision bound for b1, the gradient parameter.
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v Gradient magnetometry and basic setup
P

recision bounds for states insensitive to the homogeneous By

For states that commute with the homogeneous field, [g, J;] = 0, the precision bound is

and it is saturable.

_1
(Aby)?

< Falo, Hil,
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v Gradient magnetometry and basic setup
P

recision bounds for states insensitive to the homogeneous By

For states that commute with the homogeneous field, [g, J;] = 0, the precision bound is

1
——— < Fqlo, Hil,
@y < Tole ]
and it is saturable.

m For statistical mixtures of point-like particles

Z/anmp(x)dx?'Q[@(S) ] (n) ] (m)]

n,m

(Abl)2
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ﬁ? Gradient magnetometry and basic setup
P

recision bounds for states insensitive to the homogeneous By

For states that commute with the homogeneous field, [g, J;] = 0, the precision bound is

1
W < Folo, Hil,

and it is saturable.
m For statistical mixtures of point-like particles

Z/anmp(x)dx?'Q[@(S) ] (n) ] (m)]

n,m

(Abl)2

Precision bounds for states sensitive to the homogeneous By
For states sensitive to global rotations of the spin state, the precision bound is

spunoq Lqy pue dnjes waysAg

1 (FQ)j 1
(Ab1)? <o - (FQloo
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ﬁ? Gradient magnetometry and basic setup
P

recision bounds for states insensitive to the homogeneous By

For states that commute with the homogeneous field, [g, J;] = 0, the precision bound is

1
02 < Falo, Hil,

and it is saturable.

m For statistical mixtures of point-like particles

Z/anmp(x)deQ[@(S) ] (n) ] (m)]

n,m

(Abl)2

Precision bounds for states sensitive to the homogeneous By
For states sensitive to global rotations of the spin state, the precision bound is

1 (7EQ)5,1
(Ab1)? <o - (FQoo’

m For statistical mixtures of point-like particles

2
(Zn/an(x)dx TQ[@(S),]'z(n)/]z])

YpxmP(x) dx Folo® (") A
o Z/ (e)dx FQle™, j=j= "1 - Fald®, I-]
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System setup and precision bounds of the gradient parameter estimation for various
states

m Precision bounds for various systems and different spin states

Conclusions
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Chain of qubits

P(x) = l—[ O(xy — na).

n

PRA 97, 053603 (2018)
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oo Chain of qubits

Totally polarized |0) ?N state under a magnetic
field pointing towards the z-direction

P(x) = H O(xy —na).

n

(a) Initial state

R,

(b) Final state

y‘(‘o\wl
" s ¢

1

]

spunoq Iqy pue dnjas wajsAg

2
(Zn na?‘-Q[|O>§N:jz(n)r]z])
Fll0)EN J2]

o < Dm0, ) -
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ﬁ? Chain of qubits

Totally polarized |0)§’N state under a magnetic
P(x) = H d(xn = na). field pointing towards the z-direction

n
(a) Initial state
m Mean particle position:

R,

1

(b) Final state

N2-1 Y
2 _ 2
T zl—»

m Variance of the particle positions:

]

2
(Zn na7‘~Q[|O>§N:]'z(n)r]z])
Fll0)EN J2]

W \anaz(f—Q[lO)@N j n ]Z(m)]_

N2-1
:az

_ 2
1 N =0“N.
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v Single ensemble of point-like spin—% atoms

Permutationally invariant PDF i + + + b4

1 o
P = > PilP(x)] 4 CECRERRIPR TN
N & Ml—ﬁ” b g

m p=[x,P(x)dx. [N Behbood et al. (2014), PRL 113 093601]
mol= / x2P(x) dx, if the origin is at 0.

m= fxnme(x) dx for n # m.
1 €[~0?/(N - 1),0%].

PRA 97, 053603 (2018) ICES, May 30 iagoba.apellaniz@gmail.com

spunoq Iqy pue dnjas wajsAg

10



eman ta zaba z

v Single ensemble of point-like spin—% atoms

Permutationally invariant PDF i + + + b4

1 o
P)= = > PrP@)] o LI TN
N & Ml—ﬁ” b g

" y = / xuP(x)dx. [N Behbood et al. (2014), PRL 113 093601]
/ x2P(x) dx, if the origin is at 0.

m= fxnme(x) dx for n # m.
1 €[~0?/(N - 1),0%].

Precision CR bound

m\( —U)ZfQ[@(S) (n)]

+ T]TQ[Q(S),]Z]
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Single ensemble of point-like spin-} atoms

5

Permutationally invariant PDF

P =5 > PP

keSy

= fan(x)dx

mol= / x2P(x) dx, if the origin is at 0.

m= fxnme(x) dx for n # m.
1 €[~0?/(N - 1),0%].

Precision CR bound

m\( —U)ZTQ[@(S) (n)]

+ T]TQ[Q(S),]Z]

e DAIPURTIN

Ml—g

}
4

!

IR AR AR W

[N Behbood et al. (2014), PRL 113 093601]

4
L 3

]

L4

oo

10
gnd Dy
3y

15t

- Qnd Q

3rd Dy
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3ty
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Precision bounds for various spin states

Single ensemble of point-like spin-} atoms

Singlet states
0¥ = 3" p210,0,iX0,0,il
A
Its precision bound is

1 .
WQ(U T])N
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Single ensemble of point-like spin-} atoms
Precision bounds for various spin states

Singlet states

0¥ = 3" p210,0,iX0,0,il
A

Its precision bound is

1 2
W <(U —T])N

Best separable state

o 4N M2 ifn=m
Follt)geps 12", 121 = {0 :

otherwise.

Then, the precision is

1 2
(Ab12

PRA 97, 053603 (2018) ICES, May 30 iagoba.apellaniz@gmail.com

spunoq Iqy pue dnjas wajsAg

11



‘eman ta zabal zazu

Single ensemble of point-like spin-} atoms
Precision bounds for various spin states

Singlet states

0¥ = 3" p210,0,iX0,0,il
A
Its precision bound is

1 2
W <(U —T])N

Best separable state

o 4NN ifn=m
Fall9)sepy 1= j2 ] = {0( j=")
Then, the precision is

1 2
(Ab12

otherwise.

|GHZ) states

FollGHZ), j.M] =1

and
FollGHZ),, J.] = N*.
Hence,
1 2
—— < (0 - )N
e (6= =n)
+ N2,
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Single ensemble of point-like spin-} atoms
Precision bounds for various spin states

Singlet states

0¥ = 3" p210,0,iX0,0,il
A |GHZ) states

Its precision bound is FolIGHZ), jz(n)] -1 g
! < (0?2 =nN and é
(@b S T 5
= N2 a
Best separable state FQllGHZ)y J2] = N*. =
e Hence, :w
. . 4(A;;")* ifn=m 2
(n) S (m)y Jz 5
TQ“I’D)Sep']Z J2"1 {O otherwise. 1 < (02 - )N >
(Aby)?
Then, the precision is >
+nN-.
1 2
— <
@bz 7

More in PRA 97, 053603 (2018)
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Double well of atoms

N/2 N
P(x) = H O(x, +a) H O(xy —a)
n=1 n=N/2+1

The contribution of the position of the particles:

— 2
/an(x) dx = { a and / XpXmP(x)dx = {‘le
+a —a

m In this case the mean position is ¢ = 0 and the
variance is 62 = a?.

[K Langle et al. (2018), Science 360
6387]
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v Double well of atoms

N/2 N
P(x) = H O(x, +a) H O(xy —a)
n=1 n=N/2+1

The contribution of the position of the particles:

- 2
/an(x) dx = { a and /xnme(x) dx = {+a2
+a —a

m In this case the mean position is ¢ = 0 and the
variance is 62 = a?.

[K Langle et al. (2018), Science 360
6387]

For spin-% system, the state that maximizes the bound is

N/2 N/2

[0,...,0,1, ., 1) +[1,...,1,0,...,0) 1
| >= ,...,U1,..., s 4,0,000, , and <0_2 2
4 v (b2
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| Double well of atoms

Product of two equal spin states

For states of the type [¢)™ @ [)®), we have that

7—'Q[|¢),jz<”),jz("')] if n and m same well

(L) (R) 4 (n) ; (m)y—
Foll)™ e ()™, =1, j="] {0 otherwise
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| Double well of atoms

Product of two equal spin states
For states of the type [¢)™ @ [)®), we have that

Follwy, j=M, j-0"M]  if n and m same well

(L) (R) + (n) ; (m)] =
Folly)™ @ [p)y™, iz, j21"] {0 otherwise

Hence, the precision bounds can be simply computed for N /2 particles at one of the
wells,

<2027 l1y), - N/P] < 62N )2.

spunoq Lqy pue dnjes waysAg

_1
(Aby)?
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Double well of atoms

w What if we want to estimate both parameters?

If we assume a = 1, we have that Hy = ]Z(L)+]Z(R) and Hy = ]Z(L)—]Z(R).

Falp, Hol + Falp, Hil = 2%alp, J. V] + 27alp, - ®]

Separable states
TQ[p, Ho] + %[p,Hl] = 2NL + ZNR =2N.

Heisenberg limit for evenly split systems

Folp, Hol + Folp, Hil = 2N2 +2N3Z = N2

spunoq Iqy pue dnjas wajsAg

Examples
IGHZ) — Folly), Hol=N? and Fo[ly), Hi] = 0.
N/2 NJ2
— 11
) = 10,...,1,...)+]|1,...,0,...) . Tq[lll)),Hl]:Nz and  Folly), Hol = 0.

V2
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v Summary

Conclusions

m In principle, the effect of an unknown global rotation has to be considered.

m For a single ensemble with localized particles, a method with a huge practical
advantage, the shot-noise limit can be surpassed if and only if there is a strong
statistical correlation between the particle positions.

m There is a trade-off between homogeneous and gradient magnetometry if one
wants to estimate both parameters at the same time.
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Conclusions

m In principle, the effect of an unknown global rotation has to be considered.

m For a single ensemble with localized particles, a method with a huge practical
advantage, the shot-noise limit can be surpassed if and only if there is a strong
statistical correlation between the particle positions.

m There is a trade-off between homogeneous and gradient magnetometry if one
wants to estimate both parameters at the same time.

Thank you for your attention!
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