# Gradient Magnetometry with Atomic Ensembles

Phys. Rev. A 97, 053603 (2018)

Universidad Euskal Herriko del País Vasco Unibertsitatea

Iagoba Apellaniz<sup>1,@</sup>, Iñigo Urizar-Lanz<sup>1</sup>, Zoltán Zimborás<sup>1,2,3</sup>, Philipp Hyllus<sup>1</sup> and Géza Tóth<sup>1,2,4</sup>

<sup>1</sup>Department of Physics, University of the Basque Country UPV/EHU, P. O. Box 644, E-48080 Bilbao, Spain <sup>2</sup>Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany <sup>3</sup>Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary <sup>4</sup>IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao, Spain

♥ @iagobaapellaniz - ⊠ iagoba.apellaniz@gmail.com - ⊕ iagobaapellaniz.gitlab.io

### - Abstract

We study gradient magnetometry with ensembles of atoms with arbitrary spin. We calculate precision bounds for estimating the gradient of the magnetic field based on the quantum Fisher information (qFI). For states that are sensitive to homogeneous fields, a simultaneous measurement is needed, as the homogeneous field must also be estimated.

We present a method to calculate precision bounds for gradient estimation with two spatially separated atomic ensembles. We also consider a single atomic ensemble with an arbitrary density profile, where the atoms cannot be addressed individually, and which is a very relevant case for experiments.

## System setup

• The system  $\rho = \rho^{(x)} \otimes \rho^{(s)}$  spans along the *x*-axis

$$arrho^{(x)} = \int rac{I^{(x)}}{\langle m{x} | m{x} 
angle} |m{x} 
angle \! \langle m{x} | \, \mathrm{d}m{x}$$

• The magnetic field is linear in x

 $B = B_0 + xB_1 + O(x^2)$ • *B* points always towards *z*-direction  $B_0 = B_0(0, 0, 1)$   $B_1 = B_1(0, 0, 1)$ 



# $h^{(n)} = \gamma B_z^{(n)} \otimes j_z^{(n)}$ • The collective Hamiltonian $H = \gamma \sum_{i=1}^{N} B_z^{(n)} \otimes i^{(n)}$

• The atoms interact only with the magnetic field ( $\gamma = g\mu_{\rm B}$ )

Time evolution of the multipartite system

$$H = \gamma \sum_{n=1} B_z^{(n)} \otimes j_z^{(n)}$$







• The Cramér-Rao (CR) matrix inequality

 $\operatorname{Cov}(b_0, b_1) \geqslant \boldsymbol{\mathcal{F}}_{\mathrm{Q}}^{-1}$ 

• qFI matrix elements are computed based on the generators

Precision bound for states sensitive to the homogeneous field

Based on the CR matrix inequality the achievable precision is given by the inverted qFI matrix

$$(\Delta b_1)^{-2} \leqslant (\mathcal{F}_{\mathbf{Q}})_{1,1} - \frac{(\mathcal{F}_{\mathbf{Q}})_{0,1}(\mathcal{F}_{\mathbf{Q}})_{1,0}}{(\mathcal{F}_{\mathbf{Q}})_{0,0}} .$$
$$(\Delta b_1)^{-2} \leqslant \sum_{n,m}^N \int x_n x_m P(\mathbf{x}) \, \mathrm{d}\mathbf{x} \, \mathcal{F}_{\mathbf{Q}}[\varrho^{(s)}, j_z^{(n)}, j_z^{(m)}] - \frac{(\sum_{n=1}^N \int x_n P(\mathbf{x}) \, \mathrm{d}\mathbf{x} \, \mathcal{F}_{\mathbf{Q}}[\varrho^{(s)}, j_z^{(n)}, J_z])^2}{\mathcal{F}_{\mathbf{Q}}[\varrho, J_z]}$$

Precision bound for states insensitive to the homogeneous field

 $[\varrho, H_0] = 0$ 

If the state is insensitive to the homogeneous field the achievable precision is given by the CR bound

 $(\Delta b_1)^{-2} \leqslant \mathcal{F}_{\mathbf{Q}}[\varrho, H_1].$  $(\Delta b_1)^{-2} \leqslant \sum_{n,m}^N \int x_n x_m P(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} \, \mathcal{F}_{\mathbf{Q}}[\varrho^{(s)}, j_z^{(n)}, j_z^{(m)}]$ 

**The bounds are invariant under a displacement of the system** These bounds are invariant under





The bound seems to scale with the third power of *N*. The reason is that the length increases with the particle number. We should compare metrological usefulness of systems of the same size.







A ensemble of atoms (blue disks). The ensemble spans along the x-direction to sense the gradient of the magnetic field. • We assume that the origin is at the center of the cloud of atoms,  $\mu = 0$ .  $(\Delta b_1)^{-2} \leqslant \sum_{n=1}^{N} \sigma^2 \mathcal{F}_Q[\varrho^{(s)}, j_z^{(n)}] + \sum_{n \neq m}^{N} \eta \mathcal{F}_Q[\varrho^{(s)}, j_z^{(n)}, j_z^{(m)}]$   $\sum_{n,m}^{N} \mathcal{F}_Q[\varrho^{(s)}, j_z^{(n)}, j_z^{(m)}] = \mathcal{F}_Q[\varrho^{(s)}, J_z]$   $(\Delta b_1)^{-2} \leqslant (\sigma^2 - \eta) \sum_{n=1}^{N} \mathcal{F}_Q[\varrho^{(s)}, j_z^{(n)}] + \eta \underbrace{\mathcal{F}_Q[\varrho^{(s)}, J_z]}_{=0 \text{ for } [\varrho, J_z]=0}$ 

It indicates that if the state is insensitive to the homogeneous fields the first term might scale at most with N, so not surpassing the shot-noise limit.

On the other hand if the state is sensitive to the homogeneous fields the second term can scale with  $N^2$  if and only if the correlation factor is positive  $\eta > 0$ .

#### Precision limit for various spin states

1. Singlet states

A pure singlet state is a simultaneous eigenstate of the collective  $J_z$ and  $J^2$  operators, with an eigenvalue zero for both operators. For a mixed singlet: 2. Totally polarized state along y-axis

 $\mathcal{F}_{\mathbf{Q}}[|+j\rangle_{y}^{\otimes N}, j_{z}^{(n)}] = 2j \qquad \qquad \mathcal{F}_{\mathbf{Q}}[|+j\rangle_{y}^{\otimes N}, J_{z}] = 2Nj$ 





 $\langle 0, 0, D | j_z^{(n)} | 0, 0, D' \rangle = 0.$ 

 $\mathcal{F}_{\mathrm{Q}}[\varrho_{\mathrm{singlet}}, j_{z}^{(n)}] = 4 \langle j_{z}^{(n)2} \rangle$ 

 $(\Delta b_1)^{-2} \leqslant (\sigma^2 - \eta) N \frac{4j(j+1)}{3}$ 

5. GHZ states

Such states are very sensitive to the homogeneous field.

 $\langle j_z^{(n)2} 
angle = rac{1}{4} \qquad \langle J_z 
angle = rac{N^2}{4}$ 



### - Conclusions

- We obtained precision limits of estimating the gradient of a magnetic field with atomic ensembles initialized in different states.
- For the two-ensemble case, the precision of the estimation of the gradient can reach the Heisenberg limit.
- For a single ensemble with localized particles, the shot-noise limit can be surpassed if there is a strong correlation between the particle positions.
- Single-ensemble methods can have a huge practical advantage compared to methods based on two or more atomic ensembles since using a single ensemble makes the experiment simpler and can also result in a better spatial resolution.

