Refereed publications in journals and preprints

1. G. Tóth, W. Wieczorek, D. Gross, R. Krischek, C. Schwemmer, and H. Weinfurter, Permutationally invariant quantum tomography [pdf,pdf2], Phys. Rev. Lett. 105, 250403 (2010); arxiv:1005.3313.

2. E. Alba, G. Tóth, and J.J. García-Ripoll, Mapping the spatial distribution of entanglement in optical lattices [pdf], Phys. Rev. A 82, 062321 (2010); arxiv:1007.0985.

3. G. Vitagliano, P. Hyllus, I.L. Egusquiza, and G. Tóth, Spin squeezing inequalities for arbitrary spin [pdf,pdf2], Phys. Rev. Lett. 107, 240502 (2011); arxiv:1104.3147.

4. R. Krischek, C. Schwemmer, W. Wieczorek, H. Weinfurter, P. Hyllus, L. Pezzé, and A. Smerzi, Useful Multiparticle Entanglement and Sub-Shot-Noise Sensitivity in Experimental Phase Estimation, Phys. Rev. Lett. 107, 080504 (2011); arxiv:1108.6002.

5. J. Chwedenczuk, P. Hyllus, F. Piazza, and A. Smerzi, Sub shot-noise interferometry from measurements of the one-body density, New J. Phys. 14, 093001 (2012); arxiv:1108.2785v1.

6. B. Lücke, M. Scherer, J. Kruse, L. Pezzé, F. Deuretzbacher, P. Hyllus, O. Topic, J. Peise, W. Ertmer, J. Arlt, L. Santos, A. Smerzi, and C. Klempt, Twin Matter Waves for Interferometry Beyond the Classical Limit, Science 334, 773 (2011); arxiv:1204.4102.

Related presentations: Basque TV Home page of the University (Spanish)   Home page of the University (Basque)

7. G. Tóth, Multipartite entanglement and high-precision metrology [pdf], Phys. Rev. A 85, 022322 (2012); arxiv:1006.4368.

8. P. Hyllus, W. Laskowski, R. Krischek, C. Schwemmer, W. Wieczorek, H. Weinfurter, L. Pezzé, and A. Smerzi, Fisher information and multiparticle entanglement, Phys. Rev. A 85, 022321 (2012); arxiv:1006.4366.

9. J. Tura, R. Augusiak, P. Hyllus, M. Kuś, J. Samsonowicz, and M. Lewenstein, Four-qubit PPT entangled symmetric states, Phys. Rev. A 85, 060302(R) (2012); arxiv:1203.3711.

10. P. Hyllus, L. Pezzé, A. Smerzi, and G. Tóth, Entanglement and Extreme Spin Squeezing for a Fluctuating Number of Indistinguishable Particles [pdf], Phys. Rev. A 86 012337 (2012); arxiv:1204.5329.

11. T. Moroder, P. Hyllus, G. Tóth, C. Schwemmer, A. Niggebaum, S. Gaile, O. Gühne, and H. Weinfurter, Permutationally invariant state reconstruction [pdf], New J. Phys. 14, 105001 (2012), Focus issue on Quantum Tomography; arxiv:1205.4941.

12. D. Petz and G. Tóth, Matrix variances with projections [pdf], Acta Sci. Math. (Szeged) 78, 683 (2012).

Note: Acta Sci. Math. (Szeged) was founded by A. Haar (Haar measure, Haar transform, etc.) and F. Riesz.

13. G. Tóth and D. Petz, Extremal properties of the variance and the quantum Fisher information, Phys. Rev. A 87, 032324 (2013) [pdf]; arxiv:1109.2831.

14. I. Urizar-Lanz, P. Hyllus, I.L. Egusquiza, M.W. Mitchell, G. Tóth, Macroscopic singlet states for gradient magnetometry [pdf,pdf2], Phys. Rev. A 88, 013626 (2013); arxiv:1203.3797.

15. Z. Zimborás, M. Faccin, Z. Kádár, J. Whitfield, B. Lanyon, and J. Biamonte, Quantum Transport Enhancement by Time-Reversal Symmetry Breaking, Scientific Reports 3, 2361 (2013); arxiv:1208.4049.

16. Z. Zimborás, R. Zeier, M. Keyl, and T. Schulte-Herbrueggen, A Dynamic Systems Approach to Fermions with Interrelation to Spins, EPJ Quantum Technology 2014, 1:11; arXiv:1211.2226.

17. Z. Kádár, M. Keyl, R. Matjeschk, G. Tóth, and Z. Zimborás, Simulating continuous quantum systems by mean field fluctuations, arXiv:1211.2173.

18. G. Vitagliano, I. Apellaniz, I.L. Egusquiza, and G. Tóth, Spin squeezing and entanglement for arbitrary spin, Phys. Rev. A 89, 032307 (2014) [pdf]; arxiv:1310.2269.

19. V. Eisler and Z. Zimborás, Area law violation for the mutual information in a nonequilibrium steady state, Phys. Rev. A 89, 032321 (2014); arXiv:1311.3327.

20. B. Lücke, J. Peise, G. Vitagliano, J. Arlt, L. Santos, G. Tóth, and C. Klempt, Detecting multiparticle entanglement of Dicke states [pdf,pdf2], Phys. Rev. Lett. 112, 155304 (2014); arxiv:1403.4542; Editors' Suggestion; synopsis at; article in the Revista Española de Física, Puntos de interés, Vol 28, Number 2, page 31 (2014).

21. C. Schwemmer, G. Tóth, A. Niggebaum, T. Moroder, D. Gross, O. Gühne, and H. Weinfurter, Efficient Tomographic Analysis of a Six Photon State [pdf,pdf2], Phys. Rev. Lett. 113, 040503 (2014); arXiv:1401.7526.

22. N. Behbood, F. Martin Ciurana, G. Colangelo, M. Napolitano, G. Tóth, R.J. Sewell, M.W. Mitchell, Generation of macroscopic singlet states in a cold atomic ensemble [pdf,pdf2], Phys. Rev. Lett. 113, 093601 (2014); arxiv:1403.1964; Editors' Suggestion, covered in Scientific American “Quantum Entanglement Creates New State of Matter”.

23. G. Tóth and I. Apellaniz, Quantum metrology from a quantum information science perspective (review) [pdf], J. Phys. A: Math. Theor. 47, 424006 (2014); special issue of "50 years of Bell's theorem"; arxiv:1405.4878.

24. D.W. Lu, J. D. Biamonte, J. Li, H. Li, T.H. Johnson, V. Bergholm, M. Faccin, Z. Zimborás, R. Laflamme, J. Baugh, and S. Lloyd, Chiral Quantum Walks, Phys. Rev. A 93, 042302 (2016); arXiv:1405.6209.

25. G. Tóth, T. Moroder, and O. Gühne, Evaluating convex roof entanglement measures [pdfpdf2], Phys. Rev. Lett. 114, 160501 (2015); arxiv:1409.3806.

26. V. Eisler and Z. Zimborás, Entanglement negativity in the harmonic chain out of equilibrium, New J. Phys. 16, 123020 (2014); arxiv:1406.5474.

27. L. Pezzè, P. Hyllus, and A. Smerzi, Phase sensitivity bounds for two-mode interferometers, Phys. Rev. A 91, 032103 (2015); arxiv:1408.6971.

28. I. Apellaniz, B. Lücke, J. Peise, C. Klempt, and G. Tóth, Detecting metrologically useful entanglement in the vicinity of Dicke states [pdf], New J. Phys. 17, 083027 (2015); arXiv:1412.3426.

29. A. Cabello, M. Kleinmann, and C. Budroni, Necessary and sufficient condition for quantum state-independent contextuality, Phys. Rev. Lett. 114, 250402 (2015); arXiv:1501.03432.

30. C. Eltschka, G. Tóth, and J. Siewert, Partial transposition as a direct link between concurrence and negativity, Phys. Rev. A 91, 032327 (2015) [pdf]; Editors' Suggestion; arxiv:1505.01833.

31. C. Budroni, G. Vitagliano, G. Colangelo, R. J. Sewell, O, Gühne, G. Tóth and M.W. Mitchell, Quantum non-demolition measurement enables macroscopic Leggett-Garg tests [pdf], Phys. Rev. Lett. 115, 200403 (2015); arxiv:1503.08433.

32. M. Kleinmann and A. Cabello, Quantum correlations are stronger than all nonsignaling correlations produced by n-outcome measurements, Phys. Rev. Lett. 117, 150401 (2016); (arXiv:1505.04179)

33. I. Apellaniz, M. Kleinmann, O. Gühne, and G. Tóth, Optimal witnessing of the quantum Fisher information with few measurements, Phys. Rev. A 95, 032330 (2017), Editors' Suggestion; arXiv:1511.05203. [pdf]

34. L. Knips, C. Schwemmer, N. Klein, J. Reuter, G. Tóth, and H. Weinfurter, How long does it take to obtain a physical density matrix?, arxiv:1512.06866.

35. E. S. Gómez, S. Gómez, P. González, G. Cañas, J. F. Barra, A. Delgado, G. B. Xavier, A. Cabello, M. Kleinmann, T. Vértesi, G. Lima, Device-independent certification of a nonprojective qubit measuremen, Phys. Rev. Lett. 117, 260401 (2016); arXiv:1604.01417.

36. G. Sentís, E. Bagan, J. Calsamiglia, G. Chiribella, and R. Munoz-Tapia, The quantum change point, Phys. Rev. Lett. 117, 150502 (2016); arXiv:1605.01916.

37. A. Monràs, G. Sentís, and P. Wittek, Inductive quantum learning: Why you are doing it almost right, Phys. Rev. Lett., 118, 190503 (2017); arXiv:1605.07541.

38. G. Vitagliano, I. Apellaniz, M. Kleinmann, B. Lücke, C. Klempt, and G. TóthEntanglement and extreme spin squeezing of unpolarized states, New J. Phys. 19, 013027 (2017); arXiv:1605.07202. [pdf]

39. G. Sentís, C. Eltschka, O. Gühne, M. Huber, and J. Siewert, Quantifying entanglement of maximal dimension in bipartite mixed states, Phys. Rev. Lett. 117, 190502 (2016); arXiv:1605.09783.

40. A. Cabello, M. Kleinmann, and J.R. Portillo, Quantum state-independent contextuality requires 13 rays, J. Phys. A: Math. Theor. 49, 38LT01 (2016); arXiv:1606.01848.

41. G. Sentís, C. Eltschka, and J. Siewert, Quantitative bound entanglement in two-qutrit states, Phys. Rev. A 94, 020302(R) (2016); arxiv:1609.01698.

42. S. Altenburg, S. Wölk, G. Tóth, O. Gühne, Optimized parameter estimation in the presence of collective phase noise, Phys. Rev. A 94, 052306 (2016); arXiv:1607.05160. [pdf]

43. G. Tóth, Lower bounds on the quantum Fisher information based on the variance and various types of entropies, arxiv:1701.07461.

44. E. P. Blair, G.Tóth, and C. S. Lent, Entanglement loss in molecular quantum-dot qubits due to interaction with the environment, J. Phys.: Cond. Mat. 30, 195602 (2018); arXiv:1702.06051

45. I. Apellaniz, I. Urizar-Lanz, Z. Zimboras, P. Hyllus, and, G. Toth, Precision bounds for gradient magnetometry with atomic ensembles, Phys. Rev. A 97, 053603 (2018); arXiv:1703.09056. [pdf]

46. G. Fagundes, M. Kleinmann, Memory cost for simulating all quantum correlations of the Peres–Mermin scenario, J. Phys. A: Math. Theor. 50, 325302 (2017), arXiv:1611.07515

47. M. Kleinmann, T. Vértesi, A. Cabello, Proposed experiment to test fundamentally binary theories, Phys. Rev. A  96, 032104 (2017), arXiv:1611.05761

48. O. Marty, M. Cramer, G. Vitagliano, G. Tóth, and M. B. Plenio, Multiparticle entanglement criteria for nonsymmetric collective variances, arXiv:1708.06986.

49. G. Vitagliano, G. Colangelo, F. Martin Ciurana, M. W. Mitchell, R. J. Sewell, and G. Tóth, Entanglement and extreme planar spin squeezing, Phys. Rev. A 97, 020301(R) (2018); arXiv:1705.09090. [pdf, pdf2]

50. G. Tóth and T. Vértesi, Quantum states with a positive partial transpose are useful for metrology, Phys. Rev. Lett. 120, 020506 (2018); arXiv:1709.03995. [pdf, pdf2, density_matrices]

51. K. Lange, J. Peise, B. Lücke, I. Kruse, G. Vitagliano, I. Apellaniz, M. Kleinmann, G. Tóth, and C. Klempt, Entanglement between two spatially separated atomic modes, Science 360, 416 (2018); arXiv:1708.02480. [pdf, pdf2]

52. G. Sentís, J. Calsamiglia, and R. Munoz-Tapia, Exact Identification of a Quantum Change Point, Phys. Rev. Lett. 119, 140506 (2017); arXiv:1707.07769.

53. G. Tóth, T. Vértesi, P. Horodecki, R. Horodecki, Activating hidden metrological usefulness, Phys. Rev. Lett. 125, 020402 (2020); arXiv:1911.02577. [pdf, pdf2]

54. G. Tóth, Stretching the limits of multiparticle entanglement, Quantum Views 4, 30 (2020); doi:10.22331/qv-2020-01-27-30. [pdf]

55. K. F. Pál, G. Tóth, E. Bene, T. Vértesi, Bound entangled singlet-like states for quantum metrology, Phys. Rev. Research 3, 023101 (2021); arXiv:2002.12409. [pdf]

56. J. Kong, R. Jiménez-Martínez, C. Troullinou, V. G. Lucivero, G. Tóth, and Morgan W. Mitchell, Measurement-induced, spatially-extended entanglement in a hot, strongly-interacting atomic system, Nat. Commun. 11, 2415 (2020). [pdf]

57. P. Forgács and Á. Lukács, Electroweak strings with dark scalar condensates and their stability, Phys. Rev. D 102, 023009 (2020);

58. P. Forgács and Á. Lukács, On non-topological solitons in Abelian gauge theories coupled to U(1)×U(1) symmetric scalar fields, Phys. Rev. D 102, 076017 (2020); arXiv:2008.09844.

59. G. Vitagliano, M. Fadel, I. Apellaniz, M. Kleinmann, B. Lücke, C. Klempt, G. Tóth, Number-phase uncertainty relations and bipartite entanglement detection in spin ensembles, Quantum 7, 914 (2023); arXiv:2104.05663. [pdf, doi]

60. P. Forgács and Á. Lukács, Charge screening in the Abelian Higgs model, Eur. Phys. J. C. 81, 243 (2021); arXiv: 2011.01634.

61. J. Erdmanis, Á. Lukács, Y. Nazarov, Drastic effect of weak interaction near special points in semiclassical multiterminal superconducting nanostructures, Phys. Rev. B 106, 125422 (2022); arXiv:2107.14105.

62. G. Tóth and F. Fröwis, Uncertainty relations with the variance and the quantum Fisher information based on convex decompositions of density matrices, Phys. Rev. Research 4, 013075 (2022); arXiv:2109.06893. [pdf]

63. R. Trényi, Á. Lukács, P. Horodecki, R. Horodecki, T. Vértesi, and G. Tóth, Activation of metrologically useful genuine multipartite entanglement, arXiv:2203.05538.

64. Gy. P. Gehér, J. Pitrik, T. Titkos, and D. Virosztek, Quantum Wasserstein isometries on the qubit state space, J. Math. Anal. Appl. 522(2), 126955 (2023); arXiv:2204.14134.

65. M. Máté, K. Petrov, S. Szalay, and Ö. Legeza, Compressing multireference character of wave functions via fermionic mode optimization, arXiv:2204.13531.

66. G. Tóth and J. Pitrik, Quantum Wasserstein distance based on an optimization over separable states, Quantum 7, 1143 (2023); arXiv:2209.09925. [pdf, doi].

Book chapters

1. O. Gühne, M. Kleinmann, and T. Moroder, Analysing multiparticle quantum states, in: “Quantum [Un]Speakables II,” edited by R. Bertlmann and A. Zeilinger (Springer, 2017) pp. 345–364 (2016); arXiv:1506.06976.

2. P. Forgács and Á. Lukács, Some recent results on Q-balls and screening in the Abelian Higgs model, in: "Gribov-90 Memorial: Proceedings of the Memorival workshop devoted to the 90th birthday of V N Gribov (World Scientific, 2021) pp. 419-431.

Edited volumes

1. Yu. L. Dokshitzer, P. Lévai, Á. Lukács, and J. Nyíri, Gribov-90 Memorial: Proceedings of the Memorival workshop devoted to the 90th birthday of V N Gribov (World Scientific, Singapore, 2021)


1. I. Apellaniz, Quantum Limits on the Measurement Precision of a Magnetic Field Gradient, Master's Thesis, University of the Basque Country UPV/EHU, Bilbao, Spain (2012). (Advisor: P. Hyllus)

2. I. Urizar-Lanz, Quantum Metrology with Unpolarized Atomic Ensembles, Ph.D. Thesis, University of the Basque Country UPV/EHU, Bilbao, Spain (2014). (Advisor: G. Tóth)

3. G. Vitagliano, Spin Squeezing, Macrorealism and the Heisenberg uncertainty principle, Ph.D. Thesis, University of the Basque Country UPV/EHU, Bilbao, Spain (2015); arxiv:1511.08104. (Advisor: G. Tóth)

4. I. Apellaniz, Lower bounds on Quantum Metrological Precision, Ph.D. Thesis, University of the Basque Country UPV/EHU, Bilbao, Spain (2017); arxiv:1707.01433. (Advisor: G. Tóth)

5. G. Tóth, Entanglement detection and quantum metrology in quantum optical systems, Doctoral Dissertation submitted to the Hungarian Academy of Sciences,